↓ Skip to main content

G Protein-Coupled Receptors in Drug Discovery

Overview of attention for book
Cover of 'G Protein-Coupled Receptors in Drug Discovery'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Purification of Stabilized GPCRs for Structural and Biophysical Analyses
  3. Altmetric Badge
    Chapter 2 Purification and Crystallization of a Thermostabilized Agonist-Bound Conformation of the Human Adenosine A 2A Receptor
  4. Altmetric Badge
    Chapter 3 2D Projection Analysis of GPCR Complexes by Negative Stain Electron Microscopy
  5. Altmetric Badge
    Chapter 4 Nuts and Bolts of CF 3 and CH 3 NMR Toward the Understanding of Conformational Exchange of GPCRs
  6. Altmetric Badge
    Chapter 5 Single-Molecule Fluorescence Microscopy for the Analysis of Fast Receptor Dynamics
  7. Altmetric Badge
    Chapter 6 Quantitative Multi-color Detection Strategies for Bioorthogonally Labeled GPCRs
  8. Altmetric Badge
    Chapter 7 Approaches to Characterize and Quantify Oligomerization of GPCRs
  9. Altmetric Badge
    Chapter 8 Monitoring G Protein Activation in Cells with BRET
  10. Altmetric Badge
    Chapter 9 Use of Fluorescence Indicators in Receptor Ligands
  11. Altmetric Badge
    Chapter 10 Detection and Quantification of Intracellular Signaling Using FRET-Based Biosensors and High Content Imaging
  12. Altmetric Badge
    Chapter 11 The Measurement of Receptor Signaling Bias
  13. Altmetric Badge
    Chapter 12 Approaches to Assess Functional Selectivity in GPCRs: Evaluating G Protein Signaling in an Endogenous Environment
  14. Altmetric Badge
    Chapter 13 Bioluminescence Resonance Energy Transfer Approaches to Discover Bias in GPCR Signaling
  15. Altmetric Badge
    Chapter 14 Virus-Mediated Expression of DREADDs for In Vivo Metabolic Studies
  16. Altmetric Badge
    Chapter 15 High-Throughput Screening for Allosteric Modulators of GPCRs
  17. Altmetric Badge
    Chapter 16 Radioligand Binding Assay for an Exon 11-Associated Mu Opioid Receptor Target
  18. Altmetric Badge
    Chapter 17 Docking and Virtual Screening Strategies for GPCR Drug Discovery
  19. Altmetric Badge
    Chapter 18 The Dynamic Process of Drug–GPCR Binding at Either Orthosteric or Allosteric Sites Evaluated by Metadynamics
  20. Altmetric Badge
    Chapter 19 Experiment-Guided Molecular Modeling of Protein–Protein Complexes Involving GPCRs
  21. Altmetric Badge
    Chapter 20 Interaction Fingerprints and Their Applications to Identify Hot Spots
Attention for Chapter 19: Experiment-Guided Molecular Modeling of Protein–Protein Complexes Involving GPCRs
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Good Attention Score compared to outputs of the same age and source (70th percentile)

Mentioned by

twitter
2 X users
peer_reviews
1 peer review site

Citations

dimensions_citation
9 Dimensions

Readers on

mendeley
7 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Experiment-Guided Molecular Modeling of Protein–Protein Complexes Involving GPCRs
Chapter number 19
Book title
G Protein-Coupled Receptors in Drug Discovery
Published in
Methods in molecular biology, January 2015
DOI 10.1007/978-1-4939-2914-6_19
Pubmed ID
Book ISBNs
978-1-4939-2913-9, 978-1-4939-2914-6
Authors

Irina Kufareva, Tracy M. Handel, Ruben Abagyan, Kufareva, Irina, Handel, Tracy M., Abagyan, Ruben

Abstract

Experimental structure determination for G protein-coupled receptors (GPCRs) and especially their complexes with protein and peptide ligands is at its infancy. In the absence of complex structures, molecular modeling and docking play a large role not only by providing a proper 3D context for interpretation of biochemical and biophysical data, but also by prospectively guiding experiments. Experimentally confirmed restraints may help improve the accuracy and information content of the computational models. Here we present a hybrid molecular modeling protocol that integrates heterogeneous experimental data with force field-based calculations in the stochastic global optimization of the conformations and relative orientations of binding partners. Some experimental data, such as pharmacophore-like chemical fields or disulfide-trapping restraints, can be seamlessly incorporated in the protocol, while other types of data are more useful at the stage of solution filtering. The protocol was successfully applied to modeling and design of a stable construct that resulted in crystallization of the first complex between a chemokine and its receptor. Examples from this work are used to illustrate the steps of the protocol. The utility of different types of experimental data for modeling and docking is discussed and caveats associated with data misinterpretation are highlighted.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 7 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 7 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 3 43%
Student > Ph. D. Student 2 29%
Professor > Associate Professor 1 14%
Student > Doctoral Student 1 14%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 3 43%
Chemistry 2 29%
Agricultural and Biological Sciences 1 14%
Unknown 1 14%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 03 January 2017.
All research outputs
#14,395,000
of 23,054,359 outputs
Outputs from Methods in molecular biology
#4,237
of 13,196 outputs
Outputs of similar age
#188,350
of 354,318 outputs
Outputs of similar age from Methods in molecular biology
#271
of 998 outputs
Altmetric has tracked 23,054,359 research outputs across all sources so far. This one is in the 35th percentile – i.e., 35% of other outputs scored the same or lower than it.
So far Altmetric has tracked 13,196 research outputs from this source. They receive a mean Attention Score of 3.4. This one has gotten more attention than average, scoring higher than 64% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 354,318 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 44th percentile – i.e., 44% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 998 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 70% of its contemporaries.