↓ Skip to main content

Split Inteins

Overview of attention for book
Cover of 'Split Inteins'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Affinity Purification of Proteins in Tag-Free Form: Split Intein-Mediated Ultrarapid Purification (SIRP)
  3. Altmetric Badge
    Chapter 2 Purification of Microbially Expressed Recombinant Proteins via a Dual ELP Split Intein System
  4. Altmetric Badge
    Chapter 3 Intracellular Production of Cyclic Peptide Libraries with SICLOPPS
  5. Altmetric Badge
    Chapter 4 Recombinant Expression of Cyclotides Using Split Inteins
  6. Altmetric Badge
    Chapter 5 Ribosomal Synthesis of Thioether-Bridged Bicyclic Peptides
  7. Altmetric Badge
    Chapter 6 Preparation of Semisynthetic Peptide Macrocycles Using Split Inteins
  8. Altmetric Badge
    Chapter 7 Semisynthesis of Membrane-Attached Proteins Using Split Inteins
  9. Altmetric Badge
    Chapter 8 Protein Chemical Modification Inside Living Cells Using Split Inteins
  10. Altmetric Badge
    Chapter 9 Segmental Isotopic Labeling of Proteins for NMR Study Using Intein Technology
  11. Altmetric Badge
    Chapter 10 Segmental Isotope Labeling of Insoluble Proteins for Solid-State NMR by Protein Trans-Splicing
  12. Altmetric Badge
    Chapter 11 Split-Intein Triggered Protein Hydrogels
  13. Altmetric Badge
    Chapter 12 A Recessive Pollination Control System for Wheat Based on Intein-Mediated Protein Splicing
  14. Altmetric Badge
    Chapter 13 Conditional Toxin Splicing Using a Split Intein System
  15. Altmetric Badge
    Chapter 14 Photocontrol of the Src Kinase in Mammalian Cells with a Photocaged Intein
  16. Altmetric Badge
    Chapter 15 LOV2-Controlled Photoactivation of Protein Trans -Splicing
  17. Altmetric Badge
    Chapter 16 A Cassette Approach for the Identification of Intein Insertion Sites
  18. Altmetric Badge
    Chapter 17 Computational Prediction of New Intein Split Sites
Attention for Chapter 1: Affinity Purification of Proteins in Tag-Free Form: Split Intein-Mediated Ultrarapid Purification (SIRP)
Altmetric Badge

Citations

dimensions_citation
6 Dimensions

Readers on

mendeley
8 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Affinity Purification of Proteins in Tag-Free Form: Split Intein-Mediated Ultrarapid Purification (SIRP)
Chapter number 1
Book title
Split Inteins
Published in
Methods in molecular biology, January 2017
DOI 10.1007/978-1-4939-6451-2_1
Pubmed ID
Book ISBNs
978-1-4939-6449-9, 978-1-4939-6451-2
Authors

Dongli Guan, Zhilei Chen, Guan, Dongli, Chen, Zhilei

Abstract

Proteins purified using affinity-based chromatography often exploit a recombinant affinity tag. Existing methods for the removal of the extraneous tag, needed for many applications, suffer from poor efficiency and/or high cost. Here we describe a simple, efficient, and potentially low-cost approach-split intein-mediated ultrarapid purification (SIRP)-for both the purification of the desired tagged protein from Escherichia coli lysate and removal of the tag in less than 1 h. The N- and C-fragment of a self-cleaving variant of a naturally split DnaE intein from Nostoc punctiforme are genetically fused to the N-terminus of an affinity tag and a protein of interest (POI), respectively. The N-intein/affinity tag is used to functionalize an affinity resin. The high affinity between the N- and C-fragment of DnaE intein enables the POI to be purified from the lysate via affinity to the resin, and the intein-mediated C-terminal cleavage reaction causes tagless POI to be released into the flow-through. The intein cleavage reaction is strongly inhibited by divalent ions (e.g., Zn(2+)) under non-reducing conditions and is significantly enhanced by reducing conditions. The POI is cleaved efficiently regardless of the identity of the N-terminal amino acid except in the cases of threonine and proline, and the N-intein-functionalized affinity resin can be regenerated for multiple cycles of use.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 8 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 8 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 2 25%
Student > Ph. D. Student 1 13%
Student > Doctoral Student 1 13%
Student > Master 1 13%
Unknown 3 38%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 3 38%
Immunology and Microbiology 1 13%
Unknown 4 50%