↓ Skip to main content

Nitric Oxide

Overview of attention for book
Cover of 'Nitric Oxide'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 A Simple and Useful Method to Apply Exogenous NO Gas to Plant Systems: Bell Pepper Fruits as a Model.
  3. Altmetric Badge
    Chapter 2 Measurements of Intra-oocyte Nitric Oxide Concentration Using Nitric Oxide Selective Electrode
  4. Altmetric Badge
    Chapter 3 Real-Time Imaging of Nitric Oxide Signals in Individual Cells Using geNOps
  5. Altmetric Badge
    Chapter 4 Detection of Nitric Oxide by Membrane Inlet Mass Spectrometry.
  6. Altmetric Badge
    Chapter 5 Quantum Cascade Lasers-Based Detection of Nitric Oxide
  7. Altmetric Badge
    Chapter 6 Detection of Nitric Oxide via Electronic Paramagnetic Resonance in Mollusks
  8. Altmetric Badge
    Chapter 7 Identification of S-Nitrosylated and Reversibly Oxidized Proteins by Fluorescence Switch and Complementary Techniques
  9. Altmetric Badge
    Chapter 8 A Proteomics Workflow for Dual Labeling Biotin Switch Assay to Detect and Quantify Protein S-Nitroylation
  10. Altmetric Badge
    Chapter 9 Surface Plasmon Resonance Spectroscopy for Detection of S-Nitrosylated Proteins
  11. Altmetric Badge
    Chapter 10 Measurement of S -Nitrosoglutathione in Plasma by Liquid Chromatography–Tandem Mass Spectrometry
  12. Altmetric Badge
    Chapter 11 Analysis of Recombinant Protein S-Nitrosylation Using the Biotin-Switch Technique
  13. Altmetric Badge
    Chapter 12 Direct Measurement of S-Nitrosothiols with an Orbitrap Fusion Mass Spectrometer: S-Nitrosoglutathione Reductase as a Model Protein
  14. Altmetric Badge
    Chapter 13 Identification of Tyrosine and Nitrotyrosine with a Mixed-Mode Solid-Phase Extraction Cleanup Followed by Liquid Chromatography–Electrospray Time-of-Flight Mass Spectrometry in Plants
  15. Altmetric Badge
    Chapter 14 Electrophoretic Detection and Confocal Microscopic Imaging of Tyrosine Nitrated Proteins in Plant Tissue
  16. Altmetric Badge
    Chapter 15 Identification of NO-Sensitive Cysteine Residues Using Cysteine Mutants of Recombinant Proteins
  17. Altmetric Badge
    Chapter 16 Detection of S-Nitrosated Nuclear Proteins in Pathogen-Treated Arabidopsis Cell Cultures Using Biotin Switch Technique.
  18. Altmetric Badge
    Chapter 17 Nitric Oxide Analyzer Quantification of Plant S-Nitrosothiols
  19. Altmetric Badge
    Chapter 18 Nitro-Fatty Acid Detection in Plants by High-Pressure Liquid Chromatography Coupled to Triple Quadrupole Mass Spectrometry
  20. Altmetric Badge
    Chapter 19 Bioinformatic Prediction of S-Nitrosylation Sites in Large Protein Datasets
  21. Altmetric Badge
    Chapter 20 Biotin Switch Processing and Mass Spectrometry Analysis of S-Nitrosated Thioredoxin and Its Transnitrosation Targets
  22. Altmetric Badge
    Chapter 21 Immunodetection of S-Nitrosoglutathione Reductase Protein in Plant Samples
  23. Altmetric Badge
    Chapter 22 Thioredoxin-Dependent Decomposition of Protein S-Nitrosothiols
Attention for Chapter 13: Identification of Tyrosine and Nitrotyrosine with a Mixed-Mode Solid-Phase Extraction Cleanup Followed by Liquid Chromatography–Electrospray Time-of-Flight Mass Spectrometry in Plants
Altmetric Badge

Citations

dimensions_citation
6 Dimensions

Readers on

mendeley
8 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Identification of Tyrosine and Nitrotyrosine with a Mixed-Mode Solid-Phase Extraction Cleanup Followed by Liquid Chromatography–Electrospray Time-of-Flight Mass Spectrometry in Plants
Chapter number 13
Book title
Nitric Oxide
Published in
Methods in molecular biology, January 2018
DOI 10.1007/978-1-4939-7695-9_13
Pubmed ID
Book ISBNs
978-1-4939-7694-2, 978-1-4939-7695-9
Authors

Mounira Chaki, Beatriz Sánchez-Calvo, Alfonso Carreras, Raquel Valderrama, Juan C. Begara-Morales, Francisco J. Corpas, Juan B. Barroso, Chaki, Mounira, Sánchez-Calvo, Beatriz, Carreras, Alfonso, Valderrama, Raquel, Begara-Morales, Juan C., Corpas, Francisco J., Barroso, Juan B.

Abstract

In higher plants, there is a growing interest in the study of protein tyrosine nitration (NO2Tyr) as well as the identification of in vivo nitrated proteins. Different methods have been developed for identifying nitrotyrosine in biological samples. However, these analyses are difficult because tyrosine nitration is a very low-abundance posttranslational protein modification (PTM) and the lack of efficient enrichment methods for detection. The identification and quantification of NO2Tyr in proteins has represented a challenge for researchers.In this chapter a new method for determining NO2Tyr and tyrosine (Tyr) in Arabidopsis thaliana cell-suspension culture extracts is proposed. The quantification was performed using a simple, sensitive, and specific sample preparation assay based on mixed-mode solid-phase extraction (SPE) which was developed for the quantification of trace NO2Tyr in Arabidopsis extracts by liquid chromatography-electrospray time-of-flight mass spectrometry (LC-TOFMS).

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 8 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 8 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 2 25%
Professor 1 13%
Student > Doctoral Student 1 13%
Unknown 4 50%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 2 25%
Pharmacology, Toxicology and Pharmaceutical Science 1 13%
Agricultural and Biological Sciences 1 13%
Chemistry 1 13%
Unknown 3 38%