↓ Skip to main content

Nitric Oxide

Overview of attention for book
Cover of 'Nitric Oxide'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 A Simple and Useful Method to Apply Exogenous NO Gas to Plant Systems: Bell Pepper Fruits as a Model.
  3. Altmetric Badge
    Chapter 2 Measurements of Intra-oocyte Nitric Oxide Concentration Using Nitric Oxide Selective Electrode
  4. Altmetric Badge
    Chapter 3 Real-Time Imaging of Nitric Oxide Signals in Individual Cells Using geNOps
  5. Altmetric Badge
    Chapter 4 Detection of Nitric Oxide by Membrane Inlet Mass Spectrometry.
  6. Altmetric Badge
    Chapter 5 Quantum Cascade Lasers-Based Detection of Nitric Oxide
  7. Altmetric Badge
    Chapter 6 Detection of Nitric Oxide via Electronic Paramagnetic Resonance in Mollusks
  8. Altmetric Badge
    Chapter 7 Identification of S-Nitrosylated and Reversibly Oxidized Proteins by Fluorescence Switch and Complementary Techniques
  9. Altmetric Badge
    Chapter 8 A Proteomics Workflow for Dual Labeling Biotin Switch Assay to Detect and Quantify Protein S-Nitroylation
  10. Altmetric Badge
    Chapter 9 Surface Plasmon Resonance Spectroscopy for Detection of S-Nitrosylated Proteins
  11. Altmetric Badge
    Chapter 10 Measurement of S -Nitrosoglutathione in Plasma by Liquid Chromatography–Tandem Mass Spectrometry
  12. Altmetric Badge
    Chapter 11 Analysis of Recombinant Protein S-Nitrosylation Using the Biotin-Switch Technique
  13. Altmetric Badge
    Chapter 12 Direct Measurement of S-Nitrosothiols with an Orbitrap Fusion Mass Spectrometer: S-Nitrosoglutathione Reductase as a Model Protein
  14. Altmetric Badge
    Chapter 13 Identification of Tyrosine and Nitrotyrosine with a Mixed-Mode Solid-Phase Extraction Cleanup Followed by Liquid Chromatography–Electrospray Time-of-Flight Mass Spectrometry in Plants
  15. Altmetric Badge
    Chapter 14 Electrophoretic Detection and Confocal Microscopic Imaging of Tyrosine Nitrated Proteins in Plant Tissue
  16. Altmetric Badge
    Chapter 15 Identification of NO-Sensitive Cysteine Residues Using Cysteine Mutants of Recombinant Proteins
  17. Altmetric Badge
    Chapter 16 Detection of S-Nitrosated Nuclear Proteins in Pathogen-Treated Arabidopsis Cell Cultures Using Biotin Switch Technique.
  18. Altmetric Badge
    Chapter 17 Nitric Oxide Analyzer Quantification of Plant S-Nitrosothiols
  19. Altmetric Badge
    Chapter 18 Nitro-Fatty Acid Detection in Plants by High-Pressure Liquid Chromatography Coupled to Triple Quadrupole Mass Spectrometry
  20. Altmetric Badge
    Chapter 19 Bioinformatic Prediction of S-Nitrosylation Sites in Large Protein Datasets
  21. Altmetric Badge
    Chapter 20 Biotin Switch Processing and Mass Spectrometry Analysis of S-Nitrosated Thioredoxin and Its Transnitrosation Targets
  22. Altmetric Badge
    Chapter 21 Immunodetection of S-Nitrosoglutathione Reductase Protein in Plant Samples
  23. Altmetric Badge
    Chapter 22 Thioredoxin-Dependent Decomposition of Protein S-Nitrosothiols
Attention for Chapter 1: A Simple and Useful Method to Apply Exogenous NO Gas to Plant Systems: Bell Pepper Fruits as a Model.
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
8 Dimensions

Readers on

mendeley
5 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
A Simple and Useful Method to Apply Exogenous NO Gas to Plant Systems: Bell Pepper Fruits as a Model.
Chapter number 1
Book title
Nitric Oxide
Published in
Methods in molecular biology, January 2018
DOI 10.1007/978-1-4939-7695-9_1
Pubmed ID
Book ISBNs
978-1-4939-7694-2, 978-1-4939-7695-9
Authors

Palma, José M, Ruiz, Carmelo, Corpas, Francisco J, José M. Palma, Carmelo Ruiz, Francisco J. Corpas, Palma, José M., Corpas, Francisco J.

Abstract

Nitric oxide (NO) is involved many physiological plant processes, including germination, growth and development of roots, flower setting and development, senescence, and fruit ripening. In the latter physiological process, NO has been reported to play an opposite role to ethylene. Thus, treatment of fruits with NO may lead to delay ripening independently of whether they are climacteric or nonclimacteric. In many cases different methods have been reported to apply NO to plant systems involving sodium nitroprusside, NONOates, DETANO, or GSNO to investigate physiological and molecular consequences. In this chapter a method to treat plant materials with NO is provided using bell pepper fruits as a model. This method is cheap, free of side effects, and easy to apply since it only requires common chemicals and tools available in any biology laboratory.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 5 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 5 100%

Demographic breakdown

Readers by professional status Count As %
Professor 1 20%
Professor > Associate Professor 1 20%
Researcher 1 20%
Unknown 2 40%
Readers by discipline Count As %
Agricultural and Biological Sciences 2 40%
Biochemistry, Genetics and Molecular Biology 1 20%
Unknown 2 40%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 31 March 2018.
All research outputs
#20,472,403
of 23,031,582 outputs
Outputs from Methods in molecular biology
#9,955
of 13,177 outputs
Outputs of similar age
#378,224
of 442,391 outputs
Outputs of similar age from Methods in molecular biology
#1,194
of 1,499 outputs
Altmetric has tracked 23,031,582 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 13,177 research outputs from this source. They receive a mean Attention Score of 3.4. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 442,391 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 1,499 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.