↓ Skip to main content

Membrane Dynamics and Calcium Signaling

Overview of attention for book
Cover of 'Membrane Dynamics and Calcium Signaling'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 The Plasma Membrane Calcium Pump (PMCA): Regulation of Cytosolic Ca 2+ , Genetic Diversities and Its Role in Sub-plasma Membrane Microdomains
  3. Altmetric Badge
    Chapter 2 Structure-Function Relationship of the Voltage-Gated Calcium Channel Ca v 1.1 Complex
  4. Altmetric Badge
    Chapter 3 Structure-Dynamic Coupling Through Ca 2+ -Binding Regulatory Domains of Mammalian NCX Isoform/Splice Variants
  5. Altmetric Badge
    Chapter 4 The Endoplasmic Reticulum and the Cellular Reticular Network
  6. Altmetric Badge
    Chapter 5 Structure-Function Relationship of the SERCA Pump and Its Regulation by Phospholamban and Sarcolipin
  7. Altmetric Badge
    Chapter 6 Structural Insights into IP 3 R Function
  8. Altmetric Badge
    Chapter 7 IP 3 Receptor Properties and Function at Membrane Contact Sites
  9. Altmetric Badge
    Chapter 8 Structural Details of the Ryanodine Receptor Calcium Release Channel and Its Gating Mechanism
  10. Altmetric Badge
    Chapter 9 Store-Operated Calcium Entry: An Historical Overview
  11. Altmetric Badge
    Chapter 10 From Stores to Sinks: Structural Mechanisms of Cytosolic Calcium Regulation
  12. Altmetric Badge
    Chapter 11 Assembly of ER-PM Junctions: A Critical Determinant in the Regulation of SOCE and TRPC1
  13. Altmetric Badge
    Chapter 12 Beyond Intracellular Signaling: The Ins and Outs of Second Messengers Microdomains
  14. Altmetric Badge
    Chapter 13 Mitochondrial VDAC, the Na + /Ca 2+ Exchanger, and the Ca 2+ Uniporter in Ca 2+ Dynamics and Signaling
  15. Altmetric Badge
    Chapter 14 Annexins: Ca 2+ Effectors Determining Membrane Trafficking in the Late Endocytic Compartment
  16. Altmetric Badge
    Chapter 15 Ca 2+ Signalling and Membrane Dynamics During Cytokinesis in Animal Cells
Attention for Chapter 3: Structure-Dynamic Coupling Through Ca 2+ -Binding Regulatory Domains of Mammalian NCX Isoform/Splice Variants
Altmetric Badge

Citations

dimensions_citation
8 Dimensions

Readers on

mendeley
13 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Structure-Dynamic Coupling Through Ca 2+ -Binding Regulatory Domains of Mammalian NCX Isoform/Splice Variants
Chapter number 3
Book title
Membrane Dynamics and Calcium Signaling
Published in
Advances in experimental medicine and biology, January 2017
DOI 10.1007/978-3-319-55858-5_3
Pubmed ID
Book ISBNs
978-3-31-955857-8, 978-3-31-955858-5
Authors

Daniel Khananshvili, Khananshvili, Daniel

Abstract

Mammalian Na+/Ca2+ exchangers (NCX1, NCX2, and NCX3) and their splice variants are expressed in a tissue-specific manner and are regulated by Ca2+ binding CBD1 and CBD2 domains. NCX2 does not undergo splicing, whereas in NCX1 and NCX3, the splicing segment (with mutually exclusive and cassette exons) is located in CBD2. Ca2+ binding to CBD1 results in Ca2+-dependent tethering of CBDs through the network of interdomain salt-bridges, which is associated with NCX activation, whereas a slow dissociation of "occluded" Ca2+ inactivates NCX. Although NCX variants share a common structural basis for Ca2+-dependent tethering of CBDs, the Ca2+ off-rates of occluded Ca2+ vary up to 50-fold, depending on the exons assembly. The Ca2+-dependent tethering of CBDs rigidifies the interdomain movements of CBDs without any significant changes in the CBDs' alignment; consequently, more constraining conformational states become more populated in the absence of global conformational changes. Although this Ca2+-dependent "population shift" is a common mechanism among NCX variants, the strength and span of backbone rigidification from the C-terminal of CBD1 to the C-terminal of CBD2 is exon dependent. The mutually exclusive exons differentially stabilize/destabilize the backbone dynamics of Ca2+-bound CBDs in NCX1 and NCX3 variants, whereas the cassette exons control the stability of the interdomain linker. The combined effects of mutually exclusive and cassette exons permit a fine adjustment of two different regulatory pathways: the Ca2+-dependent activation (controlled by CBD1) and the Ca2+-dependent alleviation of Na+-induced inactivation (controlled by CBD2). Exon-controlled dynamic features match with cell-specific regulatory requirements in a given variant.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 13 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 13 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 3 23%
Student > Ph. D. Student 3 23%
Professor 1 8%
Researcher 1 8%
Professor > Associate Professor 1 8%
Other 1 8%
Unknown 3 23%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 6 46%
Agricultural and Biological Sciences 1 8%
Chemistry 1 8%
Unknown 5 38%