↓ Skip to main content

Membrane Dynamics and Calcium Signaling

Overview of attention for book
Cover of 'Membrane Dynamics and Calcium Signaling'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 The Plasma Membrane Calcium Pump (PMCA): Regulation of Cytosolic Ca 2+ , Genetic Diversities and Its Role in Sub-plasma Membrane Microdomains
  3. Altmetric Badge
    Chapter 2 Structure-Function Relationship of the Voltage-Gated Calcium Channel Ca v 1.1 Complex
  4. Altmetric Badge
    Chapter 3 Structure-Dynamic Coupling Through Ca 2+ -Binding Regulatory Domains of Mammalian NCX Isoform/Splice Variants
  5. Altmetric Badge
    Chapter 4 The Endoplasmic Reticulum and the Cellular Reticular Network
  6. Altmetric Badge
    Chapter 5 Structure-Function Relationship of the SERCA Pump and Its Regulation by Phospholamban and Sarcolipin
  7. Altmetric Badge
    Chapter 6 Structural Insights into IP 3 R Function
  8. Altmetric Badge
    Chapter 7 IP 3 Receptor Properties and Function at Membrane Contact Sites
  9. Altmetric Badge
    Chapter 8 Structural Details of the Ryanodine Receptor Calcium Release Channel and Its Gating Mechanism
  10. Altmetric Badge
    Chapter 9 Store-Operated Calcium Entry: An Historical Overview
  11. Altmetric Badge
    Chapter 10 From Stores to Sinks: Structural Mechanisms of Cytosolic Calcium Regulation
  12. Altmetric Badge
    Chapter 11 Assembly of ER-PM Junctions: A Critical Determinant in the Regulation of SOCE and TRPC1
  13. Altmetric Badge
    Chapter 12 Beyond Intracellular Signaling: The Ins and Outs of Second Messengers Microdomains
  14. Altmetric Badge
    Chapter 13 Mitochondrial VDAC, the Na + /Ca 2+ Exchanger, and the Ca 2+ Uniporter in Ca 2+ Dynamics and Signaling
  15. Altmetric Badge
    Chapter 14 Annexins: Ca 2+ Effectors Determining Membrane Trafficking in the Late Endocytic Compartment
  16. Altmetric Badge
    Chapter 15 Ca 2+ Signalling and Membrane Dynamics During Cytokinesis in Animal Cells
Attention for Chapter 7: IP 3 Receptor Properties and Function at Membrane Contact Sites
Altmetric Badge

Readers on

mendeley
15 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
IP 3 Receptor Properties and Function at Membrane Contact Sites
Chapter number 7
Book title
Membrane Dynamics and Calcium Signaling
Published in
Advances in experimental medicine and biology, January 2017
DOI 10.1007/978-3-319-55858-5_7
Pubmed ID
Book ISBNs
978-3-31-955857-8, 978-3-31-955858-5
Authors

Gemma Roest, Rita M. La Rovere, Geert Bultynck, Jan B. Parys, Roest, Gemma, La Rovere, Rita M., Bultynck, Geert, Parys, Jan B.

Abstract

The inositol 1,4,5-trisphosphate (IP3) receptor (IP3R) is a ubiquitously expressed Ca2+-release channel localized in the endoplasmic reticulum (ER). The intracellular Ca2+ signals originating from the activation of the IP3R regulate multiple cellular processes including the control of cell death versus cell survival via their action on apoptosis and autophagy. The exact role of the IP3Rs in these two processes does not only depend on their activity, which is modulated by the cytosolic composition (Ca2+, ATP, redox status, …) and by various types of regulatory proteins, including kinases and phosphatases as well as by a number of oncogenes and tumor suppressors, but also on their intracellular localization, especially at the ER-mitochondrial and ER-lysosomal interfaces. At these interfaces, Ca2+ microdomains are formed, in which the Ca2+ concentration is finely regulated by the different ER, mitochondrial and lysosomal Ca2+-transport systems and also depends on the functional and structural interactions existing between them. In this review, we therefore discuss the most recent insights in the role of Ca2+ signaling in general, and of the IP3R in particular, in the control of basal mitochondrial bioenergetics, apoptosis, and autophagy at the level of inter-organellar contact sites.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 15 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 15 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 5 33%
Professor 2 13%
Student > Master 1 7%
Student > Ph. D. Student 1 7%
Student > Doctoral Student 1 7%
Other 0 0%
Unknown 5 33%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 5 33%
Neuroscience 2 13%
Medicine and Dentistry 2 13%
Unknown 6 40%