↓ Skip to main content

Glycobiology of the Nervous System

Overview of attention for book
Cover of 'Glycobiology of the Nervous System'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Introduction to the Complexity of Cell Surface and Tissue Matrix Glycoconjugates
  3. Altmetric Badge
    Chapter 2 Introduction to Cells Comprising the Nervous System
  4. Altmetric Badge
    Chapter 3 Synthesis, Processing, and Function of N-glycans in N-glycoproteins
  5. Altmetric Badge
    Chapter 4 Synthesis of O-Linked Glycoconjugates in the Nervous System
  6. Altmetric Badge
    Chapter 5 Chemistry and Function of Glycosaminoglycans in the Nervous System
  7. Altmetric Badge
    Chapter 6 Use of glycan-targeted antibodies/lectins to study the expression/function of glycosyltransferases in the nervous system.
  8. Altmetric Badge
    Chapter 7 From Mass Spectrometry-Based Glycosylation Analysis to Glycomics and Glycoproteomics
  9. Altmetric Badge
    Chapter 8 Structural Analysis of Oligosaccharides and Glycoconjugates Using NMR
  10. Altmetric Badge
    Chapter 9 Glycolipid and Glycoprotein Expression During Neural Development
  11. Altmetric Badge
    Chapter 10 Gangliosides and Cell Surface Ganglioside Glycohydrolases in the Nervous System
  12. Altmetric Badge
    Chapter 11 Role of Myelin-Associated Glycoprotein (Siglec-4a) in the Nervous System
  13. Altmetric Badge
    Chapter 12 Glycobiology of the Nervous System
  14. Altmetric Badge
    Chapter 13 Glycosignaling: A General Review
  15. Altmetric Badge
    Chapter 14 Glycosphingolipids in the Regulation of the Nervous System
  16. Altmetric Badge
    Chapter 15 Glycobiology of Ion Transport in the Nervous System
  17. Altmetric Badge
    Chapter 16 O-GlcNAcylation of Neuronal Proteins: Roles in Neuronal Functions and in Neurodegeneration
  18. Altmetric Badge
    Chapter 17 N-glycosylation in regulation of the nervous system.
  19. Altmetric Badge
    Chapter 18 Roles of Carbohydrates in the Interaction of Pathogens with Neural Cells
  20. Altmetric Badge
    Chapter 19 Glycoconjugate Changes in Aging and Age-Related Diseases
  21. Altmetric Badge
    Chapter 20 Gangliosides and Glycolipids in Neurodegenerative Disorders
  22. Altmetric Badge
    Chapter 21 Glycosidases: Inborn Errors of Glycosphingolipid Catabolism
  23. Altmetric Badge
    Chapter 22 Ganglioside Storage Diseases: On the Road to Management
  24. Altmetric Badge
    Chapter 23 Dynamic Aspects of Neural Tumor Gangliosides
  25. Altmetric Badge
    Chapter 24 Galectins and Neuroinflammation
  26. Altmetric Badge
    Chapter 25 Glycoconjugates and Neuroimmunological Diseases
Attention for Chapter 24: Galectins and Neuroinflammation
Altmetric Badge

Citations

dimensions_citation
18 Dimensions

Readers on

mendeley
31 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Galectins and Neuroinflammation
Chapter number 24
Book title
Glycobiology of the Nervous System
Published in
Advances in neurobiology, January 2014
DOI 10.1007/978-1-4939-1154-7_24
Pubmed ID
Book ISBNs
978-1-4939-1153-0, 978-1-4939-1154-7
Authors

Hung-Lin Chen, Fang Liao, Teng-Nan Lin, Fu-Tong Liu, Chen, Hung-Lin, Liao, Fang, Lin, Teng-Nan, Liu, Fu-Tong

Abstract

Galectins, β-galactoside-binding lectins, play multiple roles in the regulation of immune and inflammatory responses. The major galectins expressed in the CNS are galectins 1, 3, 4, 8, and 9. Under normal physiological conditions, galectins maintain CNS homeostasis by participating in neuronal myelination, neuronal stem cell proliferation, and apical vesicle transport in neuronal cells. In neuronal diseases and different experimental neuroinflammatory disease models, galectins may serve as extracellular mediators or intracellular regulators in controlling the inflammatory response or conferring the remodeling capacity in damaged CNS tissues. In general, galectins 1 and 9 attenuate experimental autoimmune encephalomyelitis (a model of multiple sclerosis), while galectin-3 promotes inflammation in this model. In brain ischemic lesions, both galectins 1 and 3 are induced to help neuronal regeneration. The expression of galectin-1 is required for astrocyte-derived neurotrophic factor secretion, and recombinant galectin-1 promotes neuronal regeneration. Galectin-3 promotes microglial cell proliferation and attenuates ischemic damage and neuronal apoptosis after cerebral ischemia. In amyotrophic lateral sclerosis models, galectin-3 is deleterious to neuroregeneration, while intramuscular administration of oxidized galectin-1 can improve neuromuscular disorders. In axotomy and Wallerian degeneration, galectin-3 helps phagocytosis of macrophages to clear degenerate myelin in the injured PNS or CNS. Thus, galectins are important modulators participating in homeostasis of the CNS and neuroinflammation. Continued investigations of the roles of galectins in neuroinflammation promise to provide a better understanding of the mechanism of this process and lead to new therapeutic approaches.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 31 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 31 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 6 19%
Student > Bachelor 5 16%
Student > Master 4 13%
Student > Ph. D. Student 4 13%
Lecturer 1 3%
Other 2 6%
Unknown 9 29%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 6 19%
Medicine and Dentistry 5 16%
Neuroscience 4 13%
Agricultural and Biological Sciences 2 6%
Veterinary Science and Veterinary Medicine 1 3%
Other 2 6%
Unknown 11 35%