↓ Skip to main content

How to Overcome the Antibiotic Crisis

Overview of attention for book
Cover of 'How to Overcome the Antibiotic Crisis'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 451 Antibiotics Clinical Development and Pipeline.
  3. Altmetric Badge
    Chapter 490 Anti-virulence Strategies to Target Bacterial Infections
  4. Altmetric Badge
    Chapter 491 Anti-infectives in Drug Delivery-Overcoming the Gram-Negative Bacterial Cell Envelope. - PubMed - NCBI
  5. Altmetric Badge
    Chapter 492 Tackling Threats and Future Problems of Multidrug-Resistant Bacteria
  6. Altmetric Badge
    Chapter 493 Strategies to Block Bacterial Pathogenesis by Interference with Motility and Chemotaxis
  7. Altmetric Badge
    Chapter 494 Diagnostics and Resistance Profiling of Bacterial Pathogens
  8. Altmetric Badge
    Chapter 495 New Horizons in the Development of Novel Needle-Free Immunization Strategies to Increase Vaccination Efficacy
  9. Altmetric Badge
    Chapter 496 Exploitation of Fungal Biodiversity for Discovery of Novel Antibiotics
  10. Altmetric Badge
    Chapter 497 Epidemiology of Staphylococcus aureus Nasal Carriage Patterns in the Community
  11. Altmetric Badge
    Chapter 498 Strategies for the Discovery and Development of New Antibiotics from Natural Products: Three Case Studies
  12. Altmetric Badge
    Chapter 499 History of Antibiotics Research
  13. Altmetric Badge
    Chapter 501 New Structural Templates for Clinically Validated and Novel Targets in Antimicrobial Drug Research and Development
  14. Altmetric Badge
    Chapter 502 Synthesis of Antibiotics
  15. Altmetric Badge
    Chapter 503 Actinobacteria and Myxobacteria—Two of the Most Important Bacterial Resources for Novel Antibiotics
  16. Altmetric Badge
    Chapter 504 Antibiotics and the Intestinal Microbiome : Individual Responses, Resilience of the Ecosystem, and the Susceptibility to Infections.
  17. Altmetric Badge
    Chapter 505 Emergence and Spread of Antimicrobial Resistance: Recent Insights from Bacterial Population Genomics
  18. Altmetric Badge
    Chapter 506 Use of Antibiotics and Antimicrobial Resistance in Veterinary Medicine as Exemplified by the Swine Pathogen Streptococcus suis
Attention for Chapter 492: Tackling Threats and Future Problems of Multidrug-Resistant Bacteria
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
5 X users

Readers on

mendeley
459 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Tackling Threats and Future Problems of Multidrug-Resistant Bacteria
Chapter number 492
Book title
How to Overcome the Antibiotic Crisis
Published in
Current topics in microbiology and immunology, July 2016
DOI 10.1007/82_2016_492
Pubmed ID
Book ISBNs
978-3-31-949282-7, 978-3-31-949284-1
Authors

Medina, Eva, Pieper, Dietmar Helmut, Eva Medina, Dietmar Helmut Pieper

Abstract

With the advent of the antibiotic era, the overuse and inappropriate consumption and application of antibiotics have driven the rapid emergence of multidrug-resistant pathogens. Antimicrobial resistance increases the morbidity, mortality, length of hospitalization and healthcare costs. Among Gram-positive bacteria, Staphylococcus aureus (MRSA) and multidrug-resistant (MDR) Mycobacterium tuberculosis, and among the Gram-negative bacteria, extended-spectrum beta-lactamase (ESBLs)-producing bacteria have become a major global healthcare problem in the 21st century. The pressure to use antibiotics guarantees that the spread and prevalence of these as well as of future emerging multidrug-resistant pathogens will be a persistent phenomenon. The unfeasibility of reversing antimicrobial resistance back towards susceptibility and the critical need to treat bacterial infection in modern medicine have burdened researchers and pharmaceutical companies to develop new antimicrobials effective against these difficult-to-treat multidrug-resistant pathogens. However, it can be anticipated that antibiotic resistance will continue to develop more rapidly than new agents to treat these infections become available and a better understanding of the molecular, evolutionary and ecological mechanisms governing the spread of antibiotic resistance is needed. The only way to curb the current crisis of antimicrobial resistance will be to develop entirely novel strategies to fight these pathogens such as combining antimicrobial drugs with other agents that counteract and obstruct the antibiotic resistant mechanisms expressed by the pathogen. Furthermore, as many antibiotics are often inappropriately prescribed, a more personalized approach based on precise diagnosis tools will ensure that proper treatments can be promptly applied leading to more targeted and effective therapies. However, in more general terms, also the overall use and release of antibiotics in the environment needs to be better controlled.

X Demographics

X Demographics

The data shown below were collected from the profiles of 5 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 459 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 459 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 68 15%
Student > Ph. D. Student 64 14%
Student > Master 58 13%
Researcher 25 5%
Student > Doctoral Student 19 4%
Other 57 12%
Unknown 168 37%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 89 19%
Medicine and Dentistry 38 8%
Immunology and Microbiology 34 7%
Agricultural and Biological Sciences 29 6%
Chemistry 26 6%
Other 59 13%
Unknown 184 40%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 28 June 2017.
All research outputs
#14,268,471
of 22,880,691 outputs
Outputs from Current topics in microbiology and immunology
#393
of 679 outputs
Outputs of similar age
#205,276
of 354,681 outputs
Outputs of similar age from Current topics in microbiology and immunology
#3
of 8 outputs
Altmetric has tracked 22,880,691 research outputs across all sources so far. This one is in the 35th percentile – i.e., 35% of other outputs scored the same or lower than it.
So far Altmetric has tracked 679 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.9. This one is in the 39th percentile – i.e., 39% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 354,681 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 39th percentile – i.e., 39% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 8 others from the same source and published within six weeks on either side of this one. This one has scored higher than 5 of them.