↓ Skip to main content

Epigenome Editing

Overview of attention for book
Cover of 'Epigenome Editing'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Editing the Epigenome: Overview, Open Questions, and Directions of Future Development
  3. Altmetric Badge
    Chapter 2 Zinc Fingers, TALEs, and CRISPR Systems: A Comparison of Tools for Epigenome Editing
  4. Altmetric Badge
    Chapter 3 Designing Epigenome Editors: Considerations of Biochemical and Locus Specificities
  5. Altmetric Badge
    Chapter 4 Generation of TALE-Based Designer Epigenome Modifiers
  6. Altmetric Badge
    Chapter 5 Neuroepigenetic Editing
  7. Altmetric Badge
    Chapter 6 Allele-Specific Epigenome Editing
  8. Altmetric Badge
    Chapter 7 Key to Delivery: The (Epi-)genome Editing Vector Toolbox
  9. Altmetric Badge
    Chapter 8 CRISPR/dCas9 Switch Systems for Temporal Transcriptional Control
  10. Altmetric Badge
    Chapter 9 Delivery of Designer Epigenome Modifiers into Primary Human T Cells
  11. Altmetric Badge
    Chapter 10 Viral Expression of Epigenome Editing Tools in Rodent Brain Using Stereotaxic Surgery Techniques
  12. Altmetric Badge
    Chapter 11 Stable Expression of Epigenome Editors via Viral Delivery and Genomic Integration
  13. Altmetric Badge
    Chapter 12 Purified Protein Delivery to Activate an Epigenetically Silenced Allele in Mouse Brain
  14. Altmetric Badge
    Chapter 13 Non-viral Methodology for Efficient Co-transfection
  15. Altmetric Badge
    Chapter 14 Chromatin Immunoprecipitation in Human and Yeast Cells
  16. Altmetric Badge
    Chapter 15 Chromatin Immunoprecipitation and High-Throughput Sequencing (ChIP-Seq): Tips and Tricks Regarding the Laboratory Protocol and Initial Downstream Data Analysis
  17. Altmetric Badge
    Chapter 16 Generation of Whole Genome Bisulfite Sequencing Libraries for Comprehensive DNA Methylome Analysis
  18. Altmetric Badge
    Chapter 17 Approaches for the Analysis and Interpretation of Whole Genome Bisulfite Sequencing Data
  19. Altmetric Badge
    Chapter 18 Whole-Genome Bisulfite Sequencing for the Analysis of Genome-Wide DNA Methylation and Hydroxymethylation Patterns at Single-Nucleotide Resolution
  20. Altmetric Badge
    Chapter 19 Locus-Specific DNA Methylation Analysis by Targeted Deep Bisulfite Sequencing
  21. Altmetric Badge
    Chapter 20 DNA Methylation Analysis by Bisulfite Conversion Coupled to Double Multiplexed Amplicon-Based Next-Generation Sequencing (NGS)
  22. Altmetric Badge
    Chapter 21 Cell-to-Cell Transcription Variability as Measured by Single-Molecule RNA FISH to Detect Epigenetic State Switching
  23. Altmetric Badge
    Chapter 22 Establishment of Cell Lines Stably Expressing dCas9-Fusions to Address Kinetics of Epigenetic Editing
  24. Altmetric Badge
    Chapter 23 Editing of DNA Methylation Using dCas9-Peptide Repeat and scFv-TET1 Catalytic Domain Fusions
  25. Altmetric Badge
    Chapter 24 Chemical Inducible dCas9-Guided Editing of H3K27 Acetylation in Mammalian Cells
  26. Altmetric Badge
    Chapter 25 Screening Regulatory Element Function with CRISPR/Cas9-based Epigenome Editing
Attention for Chapter 2: Zinc Fingers, TALEs, and CRISPR Systems: A Comparison of Tools for Epigenome Editing
Altmetric Badge

About this Attention Score

  • Good Attention Score compared to outputs of the same age (65th percentile)
  • High Attention Score compared to outputs of the same age and source (84th percentile)

Mentioned by

twitter
4 X users

Citations

dimensions_citation
4 Dimensions

Readers on

mendeley
101 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Zinc Fingers, TALEs, and CRISPR Systems: A Comparison of Tools for Epigenome Editing
Chapter number 2
Book title
Epigenome Editing
Published in
Methods in molecular biology, January 2018
DOI 10.1007/978-1-4939-7774-1_2
Pubmed ID
Book ISBNs
978-1-4939-7773-4, 978-1-4939-7774-1
Authors

Charlene Babra Waryah, Colette Moses, Mahira Arooj, Pilar Blancafort, Waryah, Charlene Babra, Moses, Colette, Arooj, Mahira, Blancafort, Pilar

Abstract

The completion of genome, epigenome, and transcriptome mapping in multiple cell types has created a demand for precision biomolecular tools that allow researchers to functionally manipulate DNA, reconfigure chromatin structure, and ultimately reshape gene expression patterns. Epigenetic editing tools provide the ability to interrogate the relationship between epigenetic modifications and gene expression. Importantly, this information can be exploited to reprogram cell fate for both basic research and therapeutic applications. Three different molecular platforms for epigenetic editing have been developed: zinc finger proteins (ZFs), transcription activator-like effectors (TALEs), and the system of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and CRISPR-associated (Cas) proteins. These platforms serve as custom DNA-binding domains (DBDs), which are fused to epigenetic modifying domains to manipulate epigenetic marks at specific sites in the genome. The addition and/or removal of epigenetic modifications reconfigures local chromatin structure, with the potential to provoke long-lasting changes in gene transcription. Here we summarize the molecular structure and mechanism of action of ZF, TALE, and CRISPR platforms and describe their applications for the locus-specific manipulation of the epigenome. The advantages and disadvantages of each platform will be discussed with regard to genomic specificity, potency in regulating gene expression, and reprogramming cell phenotypes, as well as ease of design, construction, and delivery. Finally, we outline potential applications for these tools in molecular biology and biomedicine and identify possible barriers to their future clinical implementation.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 101 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 101 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 21 21%
Student > Ph. D. Student 15 15%
Student > Bachelor 14 14%
Researcher 6 6%
Student > Doctoral Student 5 5%
Other 17 17%
Unknown 23 23%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 34 34%
Agricultural and Biological Sciences 10 10%
Immunology and Microbiology 7 7%
Medicine and Dentistry 4 4%
Engineering 4 4%
Other 14 14%
Unknown 28 28%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 4. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 11 March 2018.
All research outputs
#8,331,653
of 25,732,188 outputs
Outputs from Methods in molecular biology
#2,547
of 14,336 outputs
Outputs of similar age
#153,829
of 451,898 outputs
Outputs of similar age from Methods in molecular biology
#223
of 1,486 outputs
Altmetric has tracked 25,732,188 research outputs across all sources so far. This one has received more attention than most of these and is in the 67th percentile.
So far Altmetric has tracked 14,336 research outputs from this source. They receive a mean Attention Score of 3.3. This one has done well, scoring higher than 82% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 451,898 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 65% of its contemporaries.
We're also able to compare this research output to 1,486 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 84% of its contemporaries.