↓ Skip to main content

Single Molecule Analysis

Overview of attention for book
Cover of 'Single Molecule Analysis'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Introduction to Optical Tweezers: Background, System Designs, and Commercial Solutions
  3. Altmetric Badge
    Chapter 2 RNA Unzipping and Force Measurements with a Dual Optical Trap
  4. Altmetric Badge
    Chapter 3 Protein Tethering for Folding Studies
  5. Altmetric Badge
    Chapter 4 Combining Structure–Function and Single-Molecule Studies on Cytoplasmic Dynein
  6. Altmetric Badge
    Chapter 5 A Brief Introduction to Single-Molecule Fluorescence Methods
  7. Altmetric Badge
    Chapter 6 Fluorescent Labeling of Proteins
  8. Altmetric Badge
    Chapter 7 Single-Molecule Imaging of Escherichia coli Transmembrane Proteins
  9. Altmetric Badge
    Chapter 8 Single-Molecule Fluorescence Microscopy in Living Caenorhabditis elegans
  10. Altmetric Badge
    Chapter 9 Purification and Application of a Small Actin Probe for Single-Molecule Localization Microscopy
  11. Altmetric Badge
    Chapter 10 Fluorescence Microscopy of Nanochannel-Confined DNA
  12. Altmetric Badge
    Chapter 11 Use of Single Molecule Fluorescence Polarization Microscopy to Study Protein Conformation and Dynamics of Kinesin–Microtubule Complexes
  13. Altmetric Badge
    Chapter 12 Single Molecule FRET Analysis of DNA Binding Proteins
  14. Altmetric Badge
    Chapter 13 Atomic Force Microscopy: An Introduction
  15. Altmetric Badge
    Chapter 14 Imaging of DNA and Protein by SFM and Combined SFM-TIRF Microscopy
  16. Altmetric Badge
    Chapter 15 Atomic Force Microscopy of Protein Shells: Virus Capsids and Beyond
  17. Altmetric Badge
    Chapter 16 Combined Magnetic Tweezers and Micro-mirror Total Internal Reflection Fluorescence Microscope for Single-Molecule Manipulation and Visualization
  18. Altmetric Badge
    Chapter 17 Tethered Particle Motion: An Easy Technique for Probing DNA Topology and Interactions with Transcription Factors
  19. Altmetric Badge
    Chapter 18 Single-Molecule Measurements Using Acoustic Force Spectroscopy (AFS)
  20. Altmetric Badge
    Chapter 19 Repurposing a Benchtop Centrifuge for High-Throughput Single-Molecule Force Spectroscopy
Attention for Chapter 4: Combining Structure–Function and Single-Molecule Studies on Cytoplasmic Dynein
Altmetric Badge

Citations

dimensions_citation
10 Dimensions

Readers on

mendeley
13 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Combining Structure–Function and Single-Molecule Studies on Cytoplasmic Dynein
Chapter number 4
Book title
Single Molecule Analysis
Published in
Methods in molecular biology, January 2018
DOI 10.1007/978-1-4939-7271-5_4
Pubmed ID
Book ISBNs
978-1-4939-7270-8, 978-1-4939-7271-5
Authors

Lu Rao, Maren Hülsemann, Arne Gennerich

Abstract

Cytoplasmic dynein is the largest and most intricate cytoskeletal motor protein. It is responsible for a vast array of biological functions, ranging from the transport of organelles and mRNAs to the movement of nuclei during neuronal migration and the formation and positioning of the mitotic spindle during cell division. Despite its megadalton size and its complex design, recent success with the recombinant expression of the dynein heavy chain has advanced our understanding of dynein's molecular mechanism through the combination of structure-function and single-molecule studies. Single-molecule fluorescence assays have provided detailed insights into how dynein advances along its microtubule track in the absence of load, while optical tweezers have yielded insights into the force generation and stalling behavior of dynein. Here, using the S. cerevisiae expression system, we provide improved protocols for the generation of dynein mutants and for the expression and purification of the mutated and/or tagged proteins. To facilitate single-molecule fluorescence and optical trapping assays, we further describe updated, easy-to-use protocols for attaching microtubules to coverslip surfaces. The presented protocols together with the recently solved crystal structures of the dynein motor domain will further simplify and accelerate hypothesis-driven mutagenesis and structure-function studies on dynein.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 13 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 13 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 3 23%
Unspecified 1 8%
Professor > Associate Professor 1 8%
Student > Bachelor 1 8%
Student > Postgraduate 1 8%
Other 0 0%
Unknown 6 46%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 4 31%
Unspecified 1 8%
Agricultural and Biological Sciences 1 8%
Chemistry 1 8%
Unknown 6 46%