↓ Skip to main content

Bioreactors in Stem Cell Biology

Overview of attention for book
Cover of 'Bioreactors in Stem Cell Biology'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 309 Development of a Bladder Bioreactor for Tissue Engineering in Urology
  3. Altmetric Badge
    Chapter 310 Generation of Neural Progenitor Spheres from Human Pluripotent Stem Cells in a Suspension Bioreactor
  4. Altmetric Badge
    Chapter 311 Expansion of Human Induced Pluripotent Stem Cells in Stirred Suspension Bioreactors.
  5. Altmetric Badge
    Chapter 312 Aggregate and Microcarrier Cultures of Human Pluripotent Stem Cells in Stirred-Suspension Systems
  6. Altmetric Badge
    Chapter 314 Large-Scale Expansion and Differentiation of Mesenchymal Stem Cells in Microcarrier-Based Stirred Bioreactors
  7. Altmetric Badge
    Chapter 317 Whole-Heart Construct Cultivation Under 3D Mechanical Stimulation of the Left Ventricle
  8. Altmetric Badge
    Chapter 318 Scalable Expansion of Human Pluripotent Stem Cell-Derived Neural Progenitors in Stirred Suspension Bioreactor Under Xeno-free Condition
  9. Altmetric Badge
    Chapter 332 Tendon Differentiation on Decellularized Extracellular Matrix Under Cyclic Loading
  10. Altmetric Badge
    Chapter 333 Perfusion Stirred-Tank Bioreactors for 3D Differentiation of Human Neural Stem Cells
  11. Altmetric Badge
    Chapter 334 Use of Stirred Suspension Bioreactors for Male Germ Cell Enrichment
  12. Altmetric Badge
    Chapter 335 Multicompartmental Hollow-Fiber-Based Bioreactors for Dynamic Three-Dimensional Perfusion Culture
  13. Altmetric Badge
    Chapter 336 A Bioreactor to Apply Multimodal Physical Stimuli to Cultured Cells
  14. Altmetric Badge
    Chapter 337 Use of Microfluidic Technology to Monitor the Differentiation and Migration of Human ESC-Derived Neural Cells
  15. Altmetric Badge
    Chapter 338 Expansion of Human Mesenchymal Stem Cells in a Microcarrier Bioreactor
  16. Altmetric Badge
    Chapter 340 A Microfluidic Bioreactor for Toxicity Testing of Stem Cell Derived 3D Cardiac Bodies
  17. Altmetric Badge
    Chapter 341 Novel Bioreactor Platform for Scalable Cardiomyogenic Differentiation from Pluripotent Stem Cell-Derived Embryoid Bodies
  18. Altmetric Badge
    Chapter 353 Bioengineered Models of Solid Human Tumors for Cancer Research
  19. Altmetric Badge
    Chapter 354 Uniform Embryoid Body Production and Enhanced Mesendoderm Differentiation with Murine Embryonic Stem Cells in a Rotary Suspension Bioreactor
  20. Altmetric Badge
    Chapter 355 Bioreactor Expansion of Skin-Derived Precursor Schwann Cells
  21. Altmetric Badge
    Chapter 5001 Erratum to: Bioengineered Models of Solid Human Tumors for Cancer Research
Attention for Chapter 334: Use of Stirred Suspension Bioreactors for Male Germ Cell Enrichment
Altmetric Badge

Readers on

mendeley
11 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Use of Stirred Suspension Bioreactors for Male Germ Cell Enrichment
Chapter number 334
Book title
Bioreactors in Stem Cell Biology
Published in
Methods in molecular biology, April 2016
DOI 10.1007/7651_2016_334
Pubmed ID
Book ISBNs
978-1-4939-6476-5, 978-1-4939-6478-9
Authors

Sadman Sakib, Camila Dores, Derrick Rancourt, Ina Dobrinski

Abstract

Spermatogenesis is a stem cell based system. Both therapeutic and biomedical research applications of spermatogonial stem cells require a large number of cells. However, there are only few germ line stem cells in the testis, contained in the fraction of undifferentiated spermatogonia. The lack of specific markers makes it difficult to isolate these cells. The long term maintenance and proliferation of nonrodent germ cells in culture has so far been met with limited success, partially due to the lack of highly enriched starting populations. Differential plating, which depends on the differential adhesion properties of testicular somatic and germ cells to tissue culture dishes, has been the method of choice for germ cell enrichment, especially for nonrodent germ cells. However, for large animals, this process becomes labor intensive and increases variability due to the need for extensive handling. Here, we describe the use of stirred suspension bioreactors, as a novel system for enriching undifferentiated germ cells from 1-week-old pigs. This method capitalizes on the adherent properties of somatic cells within a controlled environment, thus promoting the enrichment of progenitor cells with minimal handling and variability.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 11 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 11 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 5 45%
Professor 1 9%
Student > Bachelor 1 9%
Student > Ph. D. Student 1 9%
Researcher 1 9%
Other 0 0%
Unknown 2 18%
Readers by discipline Count As %
Chemical Engineering 2 18%
Biochemistry, Genetics and Molecular Biology 2 18%
Medicine and Dentistry 2 18%
Agricultural and Biological Sciences 1 9%
Unknown 4 36%