↓ Skip to main content

ErbB Receptor Signaling

Overview of attention for book
Cover of 'ErbB Receptor Signaling'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 ErbB Receptors and Cancer
  3. Altmetric Badge
    Chapter 2 New Insights from Drosophila into the Regulation of EGFR Signaling
  4. Altmetric Badge
    Chapter 3 C. elegans Vulva Induction: An In Vivo Model to Study Epidermal Growth Factor Receptor Signaling and Trafficking
  5. Altmetric Badge
    Chapter 4 Targeting HER2 in Advanced Breast Cancer
  6. Altmetric Badge
    Chapter 5 Methods to Investigate EGFR Ubiquitination
  7. Altmetric Badge
    Chapter 6 Dimerization Assessment of Epithelial Growth Factor Family of Receptor Tyrosine Kinases by Using Cross-Linking Reagent
  8. Altmetric Badge
    Chapter 7 Application of Immunofluorescence Staining to Study ErbB Family of Receptor Tyrosine Kinases
  9. Altmetric Badge
    Chapter 8 Activation of Endosome-Associated Inert EGF Receptor Following Internalization
  10. Altmetric Badge
    Chapter 9 Two-Pulse Endosomal Stimulation of Receptor Tyrosine Kinases Induces Cell Proliferation
  11. Altmetric Badge
    Chapter 10 Study of EGFR Signaling/Endocytosis by Site-Directed Mutagenesis
  12. Altmetric Badge
    Chapter 11 Using Percoll Gradient Fractionation to Study the Endocytic Trafficking of the EGFR
  13. Altmetric Badge
    Chapter 12 Analysis of Epidermal Growth Factor Receptor-Induced Cell Motility by Wound Healing Assay
  14. Altmetric Badge
    Chapter 13 Cell Cycle Synchronization of HeLa Cells to Assay EGFR Pathway Activation
  15. Altmetric Badge
    Chapter 14 Analysis of Constitutive EGFR Signaling Regulating IRF3 Transcriptional Activity in Cancer Cells
  16. Altmetric Badge
    Chapter 15 Measurement of Epidermal Growth Factor Receptor-Derived Signals Within Plasma Membrane Clathrin Structures
  17. Altmetric Badge
    Chapter 16 Studying Nonproliferative Roles for Egfr Signaling in Tissue Morphogenesis Using Dorsal Closure of the Drosophila Embryo
  18. Altmetric Badge
    Chapter 17 Analysis of Epithelial–Mesenchymal Transition Induced by Overexpression of Twist
  19. Altmetric Badge
    Chapter 18 Assessment of Specificity of an Adenovirus Targeted to HER3/4
  20. Altmetric Badge
    Chapter 19 Isolation of Human Mesenchymal Stem Cells for Studying ErbB Receptor Signaling
Attention for Chapter 12: Analysis of Epidermal Growth Factor Receptor-Induced Cell Motility by Wound Healing Assay
Altmetric Badge

Citations

dimensions_citation
11 Dimensions

Readers on

mendeley
7 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Analysis of Epidermal Growth Factor Receptor-Induced Cell Motility by Wound Healing Assay
Chapter number 12
Book title
ErbB Receptor Signaling
Published in
Methods in molecular biology, January 2017
DOI 10.1007/978-1-4939-7219-7_12
Pubmed ID
Book ISBNs
978-1-4939-7218-0, 978-1-4939-7219-7
Authors

Junfeng Tong, Zhixiang Wang

Abstract

Wound healing assays are well-defined and low-cost assays to study cell proliferation and migration rates of different cells and culture conditions as well as cell polarity, tissue matrix remodeling, and actin cytoskeletal structure regulation. The assay procedure generally involves growing a confluent cell monolayer and then creating a wound by scratching a line through the monolayer to destroy or displace certain cells. The open gap created by this wound is healed as cells move in and fill the damaged area. This wound healing process can take several hours to days depending on the cell type, culture conditions, and the width of the wound. The healing process is investigated microscopically over certain time intervals as the cells move into the open gap and close the wound.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 7 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 7 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 2 29%
Librarian 1 14%
Professor > Associate Professor 1 14%
Researcher 1 14%
Unknown 2 29%
Readers by discipline Count As %
Neuroscience 2 29%
Veterinary Science and Veterinary Medicine 1 14%
Immunology and Microbiology 1 14%
Biochemistry, Genetics and Molecular Biology 1 14%
Unknown 2 29%