↓ Skip to main content

Organ Regeneration

Overview of attention for book
Cover of 'Organ Regeneration'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Generation of Various Telencephalic Regions from Human Embryonic Stem Cells in Three-Dimensional Culture
  3. Altmetric Badge
    Chapter 2 Generation of a Three-Dimensional Retinal Tissue from Self-Organizing Human ESC Culture
  4. Altmetric Badge
    Chapter 3 3D Culture for Self-Formation of the Cerebellum from Human Pluripotent Stem Cells Through Induction of the Isthmic Organizer
  5. Altmetric Badge
    Chapter 4 Reconstitution of a Patterned Neural Tube from Single Mouse Embryonic Stem Cells
  6. Altmetric Badge
    Chapter 5 Functional Pituitary Tissue Formation
  7. Altmetric Badge
    Chapter 6 Directed Differentiation of Mouse Embryonic Stem Cells Into Inner Ear Sensory Epithelia in 3D Culture
  8. Altmetric Badge
    Chapter 7 Generation of Functional Thyroid Tissue Using 3D-Based Culture of Embryonic Stem Cells
  9. Altmetric Badge
    Chapter 8 Functional Tooth Regeneration
  10. Altmetric Badge
    Chapter 9 Functional Hair Follicle Regeneration by the Rearrangement of Stem Cells
  11. Altmetric Badge
    Chapter 10 Functional Salivary Gland Regeneration
  12. Altmetric Badge
    Chapter 11 Generation of a Bioengineered Lacrimal Gland by Using the Organ Germ Method
  13. Altmetric Badge
    Chapter 12 Generation of Gastrointestinal Organoids from Human Pluripotent Stem Cells
  14. Altmetric Badge
    Chapter 13 Generation of a Three-Dimensional Kidney Structure from Pluripotent Stem Cells
  15. Altmetric Badge
    Chapter 14 Making a Kidney Organoid Using the Directed Differentiation of Human Pluripotent Stem Cells
  16. Altmetric Badge
    Chapter 15 Liver Regeneration Using Cultured Liver Bud
  17. Altmetric Badge
    Chapter 16 Formation of Stomach Tissue by Organoid Culture Using Mouse Embryonic Stem Cells
  18. Altmetric Badge
    Chapter 17 In Vivo Model of Small Intestine
  19. Altmetric Badge
    Chapter 18 Erratum to: In Vivo Model of Small Intestine
Attention for Chapter 11: Generation of a Bioengineered Lacrimal Gland by Using the Organ Germ Method
Altmetric Badge

Citations

dimensions_citation
5 Dimensions

Readers on

mendeley
4 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Generation of a Bioengineered Lacrimal Gland by Using the Organ Germ Method
Chapter number 11
Book title
Organ Regeneration
Published in
Methods in molecular biology, March 2017
DOI 10.1007/978-1-4939-6949-4_11
Pubmed ID
Book ISBNs
978-1-4939-6947-0, 978-1-4939-6949-4
Authors

Masatoshi Hirayama, Kazuo Tsubota, Takashi Tsuji

Editors

Takashi Tsuji

Abstract

In organogenesis including lacrimal gland development, cell arrangement within a tissue plays an important role. The lacrimal gland develops from embryonic ocular surface epithelium through reciprocal epithelial and mesenchymal interaction, which is organized by interactive regulation of various pathways of signaling molecules. Current development of an in vitro three-dimensional cell manipulation procedure to generate a bioengineered organ germ, named as the organ germ method, has shown the regeneration of a histologically correct and fully functional bioengineered lacrimal gland after engraftment in vivo. This method demonstrated a possibility of lacrimal gland organ replacement to treat dry eye disease, which has been a public health problem leading reduction of visual function. Here, we describe protocols for lacrimal gland germ regeneration using the organ germ method and methods for analyzing the function of the bioengineered lacrimal gland after its transplantation in vivo.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 4 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 4 100%

Demographic breakdown

Readers by professional status Count As %
Professor 1 25%
Other 1 25%
Student > Doctoral Student 1 25%
Student > Master 1 25%
Readers by discipline Count As %
Medicine and Dentistry 2 50%
Biochemistry, Genetics and Molecular Biology 1 25%
Unknown 1 25%