↓ Skip to main content

Metabolic Influences on Risk for Tendon Disorders

Overview of attention for book
Cover of 'Metabolic Influences on Risk for Tendon Disorders'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Tendon Structure and Composition
  3. Altmetric Badge
    Chapter 2 Collagen Homeostasis and Metabolism
  4. Altmetric Badge
    Chapter 3 Blood Supply
  5. Altmetric Badge
    Chapter 4 Tendon Innervation
  6. Altmetric Badge
    Chapter 5 Tendon Stem Cells: Mechanobiology and Development of Tendinopathy
  7. Altmetric Badge
    Chapter 6 Informing Stem Cell-Based Tendon Tissue Engineering Approaches with Embryonic Tendon Development
  8. Altmetric Badge
    Chapter 7 Metabolic Influences on Risk for Tendon Disorders
  9. Altmetric Badge
    Chapter 8 Methods of Assessing Human Tendon Metabolism and Tissue Properties in Response to Changes in Mechanical Loading
  10. Altmetric Badge
    Chapter 9 Towards an Understanding of the Genetics of Tendinopathy
  11. Altmetric Badge
    Chapter 10 Tendons Involvement in Congenital Metabolic Disorders
  12. Altmetric Badge
    Chapter 11 Hyperuricemia in Tendons
  13. Altmetric Badge
    Chapter 12 Influence of Thyroid Hormones on Tendon Homeostasis
  14. Altmetric Badge
    Chapter 13 Sex Hormones and Tendon
  15. Altmetric Badge
    Chapter 14 Tendon Homeostasis in Hypercholesterolemia
  16. Altmetric Badge
    Chapter 15 How Obesity Affects Tendons?
  17. Altmetric Badge
    Chapter 16 Does Diabetes Mellitus Affect Tendon Healing?
  18. Altmetric Badge
    Chapter 17 Metalloproteinase Changes in Diabetes
  19. Altmetric Badge
    Chapter 18 How High Glucose Levels Affect Tendon Homeostasis
  20. Altmetric Badge
    Chapter 19 Rehabilitation of Tendon Problems in Patients with Diabetes Mellitus
  21. Altmetric Badge
    Chapter 20 Inflammation in Tendon Disorders
  22. Altmetric Badge
    Chapter 21 Deep Venous Thrombosis and Tendon Healing
  23. Altmetric Badge
    Chapter 22 Drug-Induced Tendon Disorders
  24. Altmetric Badge
    Chapter 23 The Effects of Glucocorticoid on Tendon and Tendon Derived Cells
  25. Altmetric Badge
    Chapter 24 Influence of Ageing on Tendon Homeostasis
  26. Altmetric Badge
    Chapter 25 Does Platelet-Rich Plasma Increase Tendon Metabolism?
  27. Altmetric Badge
    Chapter 26 Metabolic Influences on Risk for Tendon Disorders
  28. Altmetric Badge
    Chapter 27 Do Dietary Factors Influence Tendon Metabolism?
  29. Altmetric Badge
    Chapter 28 General Overview and Summary of Concepts Regarding Tendon Disease Topics Addressed Related to Metabolic Disorders
Attention for Chapter 17: Metalloproteinase Changes in Diabetes
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
31 Dimensions

Readers on

mendeley
25 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Metalloproteinase Changes in Diabetes
Chapter number 17
Book title
Metabolic Influences on Risk for Tendon Disorders
Published in
Advances in experimental medicine and biology, August 2016
DOI 10.1007/978-3-319-33943-6_17
Pubmed ID
Book ISBNs
978-3-31-933941-2, 978-3-31-933943-6
Authors

Bento João Abreu, Wouber Hérickson de Brito Vieira

Editors

Paul W. Ackermann, David A. Hart

Abstract

Matrix metalloproteinases (MMPs) constitute a group of over 20 structurally-related proteins which include a Zn(++) ion binding site that is essential for their proteolytic activities. These enzymes play important role in extracellular matrix turnover in order to maintain a proper balance in its synthesis and degradation. MMPs are associated to several physiological and pathophysiological processes, including diabetes mellitus (DM). The mechanisms of DM and its complications is subject of intense research and evidence suggests that MMPs are implicated with the development and progression of diabetic microvascular complications such as nephropathy, cardiomyopathy, retinopathy and peripheral neuropathy. Recent data has associated DM to changes in the tendon structure, including abnormalities in fiber structure and organization, increased tendon thickness, volume and disorganization obtained by image and a tendency of impairing biomechanical properties. Although not fully elucidated, it is believed that DM-induced MMP dysregulation may contribute to structural and biomechanical alterations and impaired process of tendon healing.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 25 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 25 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 5 20%
Student > Master 5 20%
Other 2 8%
Student > Doctoral Student 2 8%
Student > Ph. D. Student 1 4%
Other 2 8%
Unknown 8 32%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 3 12%
Medicine and Dentistry 3 12%
Pharmacology, Toxicology and Pharmaceutical Science 2 8%
Nursing and Health Professions 2 8%
Agricultural and Biological Sciences 1 4%
Other 2 8%
Unknown 12 48%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 08 October 2016.
All research outputs
#18,467,727
of 22,883,326 outputs
Outputs from Advances in experimental medicine and biology
#3,315
of 4,950 outputs
Outputs of similar age
#262,567
of 343,111 outputs
Outputs of similar age from Advances in experimental medicine and biology
#61
of 95 outputs
Altmetric has tracked 22,883,326 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 4,950 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.1. This one is in the 19th percentile – i.e., 19% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 343,111 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 12th percentile – i.e., 12% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 95 others from the same source and published within six weeks on either side of this one. This one is in the 21st percentile – i.e., 21% of its contemporaries scored the same or lower than it.