↓ Skip to main content

Metabolic Influences on Risk for Tendon Disorders

Overview of attention for book
Cover of 'Metabolic Influences on Risk for Tendon Disorders'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Tendon Structure and Composition
  3. Altmetric Badge
    Chapter 2 Collagen Homeostasis and Metabolism
  4. Altmetric Badge
    Chapter 3 Blood Supply
  5. Altmetric Badge
    Chapter 4 Tendon Innervation
  6. Altmetric Badge
    Chapter 5 Tendon Stem Cells: Mechanobiology and Development of Tendinopathy
  7. Altmetric Badge
    Chapter 6 Informing Stem Cell-Based Tendon Tissue Engineering Approaches with Embryonic Tendon Development
  8. Altmetric Badge
    Chapter 7 Metabolic Influences on Risk for Tendon Disorders
  9. Altmetric Badge
    Chapter 8 Methods of Assessing Human Tendon Metabolism and Tissue Properties in Response to Changes in Mechanical Loading
  10. Altmetric Badge
    Chapter 9 Towards an Understanding of the Genetics of Tendinopathy
  11. Altmetric Badge
    Chapter 10 Tendons Involvement in Congenital Metabolic Disorders
  12. Altmetric Badge
    Chapter 11 Hyperuricemia in Tendons
  13. Altmetric Badge
    Chapter 12 Influence of Thyroid Hormones on Tendon Homeostasis
  14. Altmetric Badge
    Chapter 13 Sex Hormones and Tendon
  15. Altmetric Badge
    Chapter 14 Tendon Homeostasis in Hypercholesterolemia
  16. Altmetric Badge
    Chapter 15 How Obesity Affects Tendons?
  17. Altmetric Badge
    Chapter 16 Does Diabetes Mellitus Affect Tendon Healing?
  18. Altmetric Badge
    Chapter 17 Metalloproteinase Changes in Diabetes
  19. Altmetric Badge
    Chapter 18 How High Glucose Levels Affect Tendon Homeostasis
  20. Altmetric Badge
    Chapter 19 Rehabilitation of Tendon Problems in Patients with Diabetes Mellitus
  21. Altmetric Badge
    Chapter 20 Inflammation in Tendon Disorders
  22. Altmetric Badge
    Chapter 21 Deep Venous Thrombosis and Tendon Healing
  23. Altmetric Badge
    Chapter 22 Drug-Induced Tendon Disorders
  24. Altmetric Badge
    Chapter 23 The Effects of Glucocorticoid on Tendon and Tendon Derived Cells
  25. Altmetric Badge
    Chapter 24 Influence of Ageing on Tendon Homeostasis
  26. Altmetric Badge
    Chapter 25 Does Platelet-Rich Plasma Increase Tendon Metabolism?
  27. Altmetric Badge
    Chapter 26 Metabolic Influences on Risk for Tendon Disorders
  28. Altmetric Badge
    Chapter 27 Do Dietary Factors Influence Tendon Metabolism?
  29. Altmetric Badge
    Chapter 28 General Overview and Summary of Concepts Regarding Tendon Disease Topics Addressed Related to Metabolic Disorders
Attention for Chapter 6: Informing Stem Cell-Based Tendon Tissue Engineering Approaches with Embryonic Tendon Development
Altmetric Badge

Citations

dimensions_citation
31 Dimensions

Readers on

mendeley
25 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Informing Stem Cell-Based Tendon Tissue Engineering Approaches with Embryonic Tendon Development
Chapter number 6
Book title
Metabolic Influences on Risk for Tendon Disorders
Published in
Advances in experimental medicine and biology, August 2016
DOI 10.1007/978-3-319-33943-6_6
Pubmed ID
Book ISBNs
978-3-31-933941-2, 978-3-31-933943-6
Authors

William Okech, Catherine K. Kuo

Editors

Paul W. Ackermann, David A. Hart

Abstract

Adult tendons fail to regenerate normal tissue after injury, and instead form dysfunctional scar tissue with abnormal mechanical properties. Surgical repair with grafts is the current standard to treat injuries, but faces significant limitations including pain and high rates of re-injury. To address this, we aim to regenerate new, normal tendons to replace dysfunctional tendons. A common approach to tendon tissue engineering is to design scaffolds and bioreactors based on adult tendon properties that can direct adult stem cell tenogenesis. Despite significant progress, advances have been limited due, in part, to a need for markers and potent induction cues. Our goal is to develop novel tendon tissue engineering approaches informed by embryonic tendon development. We are characterizing structure-property relationships of embryonic tendon to identify design parameters for three-dimensional scaffolds and bioreactor mechanical loading systems to direct adult stem cell tenogenesis. We will review studies in which we quantified changes in the mechanical and biochemical properties of tendon during embryonic development and elucidated specific mechanisms of functional property elaboration. We then examined the effects of these mechanical and biochemical factors on embryonic tendon cell behavior. Using custom-designed bioreactors, we also examined the effects of dynamic mechanical loading and growth factor treatment on embryonic tendon cells. Our findings have established cues to induce tenogenesis as well as metrics to evaluate differentiation. We finish by discussing how we have evaluated the tenogenic differentiation potential of adult stem cells by comparing their responses to that of embryonic tendon cells in these culture systems.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 25 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 25 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 8 32%
Student > Bachelor 4 16%
Student > Doctoral Student 3 12%
Lecturer 1 4%
Lecturer > Senior Lecturer 1 4%
Other 4 16%
Unknown 4 16%
Readers by discipline Count As %
Engineering 7 28%
Medicine and Dentistry 5 20%
Biochemistry, Genetics and Molecular Biology 3 12%
Materials Science 2 8%
Chemical Engineering 1 4%
Other 3 12%
Unknown 4 16%