↓ Skip to main content

Metabolic Influences on Risk for Tendon Disorders

Overview of attention for book
Cover of 'Metabolic Influences on Risk for Tendon Disorders'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Tendon Structure and Composition
  3. Altmetric Badge
    Chapter 2 Collagen Homeostasis and Metabolism
  4. Altmetric Badge
    Chapter 3 Blood Supply
  5. Altmetric Badge
    Chapter 4 Tendon Innervation
  6. Altmetric Badge
    Chapter 5 Tendon Stem Cells: Mechanobiology and Development of Tendinopathy
  7. Altmetric Badge
    Chapter 6 Informing Stem Cell-Based Tendon Tissue Engineering Approaches with Embryonic Tendon Development
  8. Altmetric Badge
    Chapter 7 Metabolic Influences on Risk for Tendon Disorders
  9. Altmetric Badge
    Chapter 8 Methods of Assessing Human Tendon Metabolism and Tissue Properties in Response to Changes in Mechanical Loading
  10. Altmetric Badge
    Chapter 9 Towards an Understanding of the Genetics of Tendinopathy
  11. Altmetric Badge
    Chapter 10 Tendons Involvement in Congenital Metabolic Disorders
  12. Altmetric Badge
    Chapter 11 Hyperuricemia in Tendons
  13. Altmetric Badge
    Chapter 12 Influence of Thyroid Hormones on Tendon Homeostasis
  14. Altmetric Badge
    Chapter 13 Sex Hormones and Tendon
  15. Altmetric Badge
    Chapter 14 Tendon Homeostasis in Hypercholesterolemia
  16. Altmetric Badge
    Chapter 15 How Obesity Affects Tendons?
  17. Altmetric Badge
    Chapter 16 Does Diabetes Mellitus Affect Tendon Healing?
  18. Altmetric Badge
    Chapter 17 Metalloproteinase Changes in Diabetes
  19. Altmetric Badge
    Chapter 18 How High Glucose Levels Affect Tendon Homeostasis
  20. Altmetric Badge
    Chapter 19 Rehabilitation of Tendon Problems in Patients with Diabetes Mellitus
  21. Altmetric Badge
    Chapter 20 Inflammation in Tendon Disorders
  22. Altmetric Badge
    Chapter 21 Deep Venous Thrombosis and Tendon Healing
  23. Altmetric Badge
    Chapter 22 Drug-Induced Tendon Disorders
  24. Altmetric Badge
    Chapter 23 The Effects of Glucocorticoid on Tendon and Tendon Derived Cells
  25. Altmetric Badge
    Chapter 24 Influence of Ageing on Tendon Homeostasis
  26. Altmetric Badge
    Chapter 25 Does Platelet-Rich Plasma Increase Tendon Metabolism?
  27. Altmetric Badge
    Chapter 26 Metabolic Influences on Risk for Tendon Disorders
  28. Altmetric Badge
    Chapter 27 Do Dietary Factors Influence Tendon Metabolism?
  29. Altmetric Badge
    Chapter 28 General Overview and Summary of Concepts Regarding Tendon Disease Topics Addressed Related to Metabolic Disorders
Attention for Chapter 5: Tendon Stem Cells: Mechanobiology and Development of Tendinopathy
Altmetric Badge

Citations

dimensions_citation
31 Dimensions

Readers on

mendeley
28 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Tendon Stem Cells: Mechanobiology and Development of Tendinopathy
Chapter number 5
Book title
Metabolic Influences on Risk for Tendon Disorders
Published in
Advances in experimental medicine and biology, August 2016
DOI 10.1007/978-3-319-33943-6_5
Pubmed ID
Book ISBNs
978-3-31-933941-2, 978-3-31-933943-6
Authors

James H-C. Wang, Issei Komatsu

Editors

Paul W. Ackermann, David A. Hart

Abstract

Millions of people suffer from tendon injuries in both occupational and athletic settings. However, the restoration of normal structure and function to injured tendons still remains as one of the greatest challenges in orthopaedics and sports medicine. In recent years, a remarkable advancement in tendon research field has been the discovery of tendon stem/progenitor cells (TSCs). Unlike tenocytes, the predominant resident cell in tendons, TSCs have the ability to self-renew and multi-differentiate. Because of these distinct properties, TSCs may play a critical role in tendon physiology as well as pathology such as tendinopathy, which is a prevalent chronic tendon injury. Additionally, because TSCs are tendon-specific stem cells, they could potentially be used in tendon tissue engineering in vitro, and serve as a promising cell source for cell-based therapy to effectively repair or even regenerate injured tendons in clinical settings.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 28 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 28 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 6 21%
Student > Ph. D. Student 4 14%
Student > Master 3 11%
Student > Doctoral Student 1 4%
Lecturer 1 4%
Other 4 14%
Unknown 9 32%
Readers by discipline Count As %
Nursing and Health Professions 4 14%
Medicine and Dentistry 4 14%
Biochemistry, Genetics and Molecular Biology 3 11%
Neuroscience 2 7%
Computer Science 1 4%
Other 5 18%
Unknown 9 32%