↓ Skip to main content

Inflammasome Signaling and Bacterial Infections

Overview of attention for book
Attention for Chapter 4: Inflammasome Signaling and Bacterial Infections
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Above-average Attention Score compared to outputs of the same age and source (51st percentile)

Mentioned by

twitter
1 X user
f1000
1 research highlight platform

Citations

dimensions_citation
9 Dimensions

Readers on

mendeley
24 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Inflammasome Signaling and Bacterial Infections
Chapter number 4
Book title
Inflammasome Signaling and Bacterial Infections
Published in
Current topics in microbiology and immunology, January 2016
DOI 10.1007/978-3-319-41171-2_4
Pubmed ID
Book ISBNs
978-3-31-941170-5, 978-3-31-941171-2
Authors

Philip, Naomi H, Zwack, Erin E, Brodsky, Igor E, Naomi H. Philip, Erin E. Zwack, Igor E. Brodsky, Philip, Naomi H., Zwack, Erin E., Brodsky, Igor E.

Abstract

The innate immune system plays an essential role in initiating the early response against microbial infection, as well as instructing and shaping subsequent responses. Microbial pathogens are enormously diverse in terms of the niches they occupy, their metabolic properties and requirements, and the cellular pathways that they target. Nevertheless, innate sensing of pathogens triggers a relatively stereotyped set of responses that involve transcriptional induction of key inflammatory mediators, as well as post-translational assembly and activation of a multiprotein inflammatory complex termed 'the inflammasome.' Along with classical Pattern Recognition Receptors, the inflammasome activation pathway has emerged as a key regulator of tissue homeostasis and immune defense. Components of the inflammasome generally exist within the cell in a soluble, monomeric state, and oligomerize in response to diverse enzymatic activities associated with infection or cellular stress. Inflammasome assembly triggers activation of the pro-enzyme caspase-1, resulting in the cleavage of caspase-1 targets. The most extensively studied targets are the cytokines of the IL-1 family, but the recent discovery of Gasdermin D as a novel target of caspase-1 and the related inflammatory caspase, caspase-11, has begun to mechanistically define the links between caspase-1 activation and cell death. Cell death is a hallmark of macrophage infection by many pathogens, including the gram-negative bacterial pathogens of the genus Yersinia. Intriguingly, the activities of the Yersinia-secreted effector proteins and the type III secretion system (T3SS) itself have been linked to both inflammasome activation and evasion during infection. The balance between these activating and inhibitory activities shapes the outcome of Yersinia infection. Here, we describe the current state of knowledge on interactions between Yersinia and the inflammasome system, with the goal of integrating these findings within the general framework of inflammasome responses to microbial pathogens.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 24 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 24 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 5 21%
Student > Master 5 21%
Student > Bachelor 3 13%
Student > Doctoral Student 2 8%
Unspecified 1 4%
Other 3 13%
Unknown 5 21%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 11 46%
Agricultural and Biological Sciences 3 13%
Immunology and Microbiology 2 8%
Unspecified 1 4%
Psychology 1 4%
Other 1 4%
Unknown 5 21%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 09 July 2019.
All research outputs
#14,857,330
of 22,881,964 outputs
Outputs from Current topics in microbiology and immunology
#418
of 679 outputs
Outputs of similar age
#219,004
of 393,701 outputs
Outputs of similar age from Current topics in microbiology and immunology
#26
of 56 outputs
Altmetric has tracked 22,881,964 research outputs across all sources so far. This one is in the 33rd percentile – i.e., 33% of other outputs scored the same or lower than it.
So far Altmetric has tracked 679 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.9. This one is in the 34th percentile – i.e., 34% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 393,701 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 41st percentile – i.e., 41% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 56 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 51% of its contemporaries.