↓ Skip to main content

Cancer Drug Resistance

Overview of attention for book
Cover of 'Cancer Drug Resistance'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Cancer Drug Resistance: A Brief Overview from a Genetic Viewpoint
  3. Altmetric Badge
    Chapter 2 Classical and Targeted Anticancer Drugs: An Appraisal of Mechanisms of Multidrug Resistance.
  4. Altmetric Badge
    Chapter 3 In Vitro Methods for Studying the Mechanisms of Resistance to DNA-Damaging Therapeutic Drugs.
  5. Altmetric Badge
    Chapter 4 In Vitro Approaches to Study Regulation of Hepatic Cytochrome P450 (CYP) 3A Expression by Paclitaxel and Rifampicin.
  6. Altmetric Badge
    Chapter 5 Uptake and Permeability Studies to Delineate the Role of Efflux Transporters.
  7. Altmetric Badge
    Chapter 6 Dynamics of Expression of Drug Transporters: Methods for Appraisal.
  8. Altmetric Badge
    Chapter 7 Fluorimetric Methods for Analysis of Permeability, Drug Transport Kinetics, and Inhibition of the ABCB1 Membrane Transporter
  9. Altmetric Badge
    Chapter 8 Resistance to Targeted Therapies in Breast Cancer.
  10. Altmetric Badge
    Chapter 9 MicroRNAs and Cancer Drug Resistance
  11. Altmetric Badge
    Chapter 10 The Role of MicroRNAs in Resistance to Current Pancreatic Cancer Treatment: Translational Studies and Basic Protocols for Extraction and PCR Analysis
  12. Altmetric Badge
    Chapter 11 Methods for Studying MicroRNA Expression and Their Targets in Formalin-Fixed, Paraffin-Embedded (FFPE) Breast Cancer Tissues
  13. Altmetric Badge
    Chapter 12 The Regulatory Role of Long Noncoding RNAs in Cancer Drug Resistance
  14. Altmetric Badge
    Chapter 13 Cancer Exosomes as Mediators of Drug Resistance.
  15. Altmetric Badge
    Chapter 14 Isolation and Characterization of Cancer Stem Cells from Primary Head and Neck Squamous Cell Carcinoma Tumors
  16. Altmetric Badge
    Chapter 15 Clinical and Molecular Methods in Drug Development: Neoadjuvant Systemic Therapy in Breast Cancer as a Model.
  17. Altmetric Badge
    Chapter 16 Proteomics in the Assessment of the Therapeutic Response of Antineoplastic Drugs: Strategies and Practical Applications.
  18. Altmetric Badge
    Chapter 17 Managing Drug Resistance in Cancer: Role of Cancer Informatics
  19. Altmetric Badge
    Chapter 18 Erratum to: In Vitro Methods for Studying the Mechanisms of Resistance to DNA-Damaging Therapeutic Drugs
Attention for Chapter 2: Classical and Targeted Anticancer Drugs: An Appraisal of Mechanisms of Multidrug Resistance.
Altmetric Badge

Citations

dimensions_citation
8 Dimensions

Readers on

mendeley
14 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Classical and Targeted Anticancer Drugs: An Appraisal of Mechanisms of Multidrug Resistance.
Chapter number 2
Book title
Cancer Drug Resistance
Published in
Methods in molecular biology, January 2016
DOI 10.1007/978-1-4939-3347-1_2
Pubmed ID
Book ISBNs
978-1-4939-3345-7, 978-1-4939-3347-1
Authors

Bruce C. Baguley, Baguley, Bruce C, Baguley, Bruce C.

Editors

José Rueff, António Sebastião Rodrigues

Abstract

The mechanisms by which tumor cells resist the action of multiple anticancer drugs, often with widely different chemical structures, have been pursued for more than 30 years. The identification of P-glycoprotein (P-gp), a drug efflux transporter protein with affinity for multiple therapeutic drugs, provided an important potential mechanism and further work, which identified other members of ATP-binding cassette (ABC) family that act as drug transporters. Several observations, including results of clinical trials with pharmacological inhibitors of P-gp, have suggested that mechanisms other than efflux transporters should be considered as contributors to resistance, and in this review mechanisms of anticancer drug resistance are considered more broadly. Cells in human tumors exist is a state of continuous turnover, allowing ongoing selection and "survival of the fittest." Tumor cells die not only as a consequence of drug therapy but also by apoptosis induced by their microenvironment. Cell death can be mediated by host immune mechanisms and by nonimmune cells acting on so-called death receptors. The tumor cell proliferation rate is also important because it controls tumor regeneration. Resistance to therapy might therefore be considered to arise from a reduction of several distinct cell death mechanisms, as well as from an increased ability to regenerate. This review provides a perspective on these mechanisms, together with brief descriptions of some of the methods that can be used to investigate them in a clinical situation.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 14 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 14 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 3 21%
Student > Doctoral Student 2 14%
Student > Bachelor 1 7%
Other 1 7%
Student > Ph. D. Student 1 7%
Other 1 7%
Unknown 5 36%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 4 29%
Immunology and Microbiology 3 21%
Pharmacology, Toxicology and Pharmaceutical Science 1 7%
Chemistry 1 7%
Unknown 5 36%