↓ Skip to main content

Systems Biology of Alzheimer's Disease

Overview of attention for book
Cover of 'Systems Biology of Alzheimer's Disease'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Alzheimer's as a Systems-Level Disease Involving the Interplay of Multiple Cellular Networks.
  3. Altmetric Badge
    Chapter 2 Application of Systems Theory in Longitudinal Studies on the Origin and Progression of Alzheimer's Disease.
  4. Altmetric Badge
    Chapter 3 The APP Proteolytic System and Its Interactions with Dynamic Networks in Alzheimer's Disease.
  5. Altmetric Badge
    Chapter 4 Effects of Mild and Severe Oxidative Stress on BACE1 Expression and APP Amyloidogenic Processing.
  6. Altmetric Badge
    Chapter 5 Advanced Assay Monitoring APP-Carboxyl-Terminal Fragments as Markers of APP Processing in Alzheimer Disease Mouse Models.
  7. Altmetric Badge
    Chapter 6 Optical Super-Resolution Imaging of β-Amyloid Aggregation In Vitro and In Vivo: Method and Techniques.
  8. Altmetric Badge
    Chapter 7 Protocols for Monitoring the Development of Tau Pathology in Alzheimer's Disease.
  9. Altmetric Badge
    Chapter 8 LC3-II Tagging and Western Blotting for Monitoring Autophagic Activity in Mammalian Cells.
  10. Altmetric Badge
    Chapter 9 Advanced Mitochondrial Respiration Assay for Evaluation of Mitochondrial Dysfunction in Alzheimer's Disease.
  11. Altmetric Badge
    Chapter 10 Analysis of Microglial Proliferation in Alzheimer's Disease.
  12. Altmetric Badge
    Chapter 11 Yeast as a Model for Alzheimer's Disease: Latest Studies and Advanced Strategies.
  13. Altmetric Badge
    Chapter 12 Yeast as a Model for Studies on Aβ Aggregation Toxicity in Alzheimer's Disease, Autophagic Responses, and Drug Screening.
  14. Altmetric Badge
    Chapter 13 Drosophila melanogaster as a Model for Studies on the Early Stages of Alzheimer's Disease.
  15. Altmetric Badge
    Chapter 14 Chronic Mild Stress Assay Leading to Early Onset and Propagation of Alzheimer's Disease Phenotype in Mouse Models.
  16. Altmetric Badge
    Chapter 15 Gene Expression Studies on Human Trisomy 21 iPSCs and Neurons: Towards Mechanisms Underlying Down's Syndrome and Early Alzheimer's Disease-Like Pathologies.
  17. Altmetric Badge
    Chapter 16 Cortical Differentiation of Human Pluripotent Cells for In Vitro Modeling of Alzheimer's Disease.
  18. Altmetric Badge
    Chapter 17 Next Generation Sequencing in Alzheimer's Disease.
  19. Altmetric Badge
    Chapter 18 Pooled-DNA Sequencing for Elucidating New Genomic Risk Factors, Rare Variants Underlying Alzheimer's Disease.
  20. Altmetric Badge
    Chapter 19 New Genome-Wide Methods for Elucidation of Candidate Copy Number Variations (CNVs) Contributing to Alzheimer's Disease Heritability.
  21. Altmetric Badge
    Chapter 20 RNA-Sequencing to Elucidate Early Patterns of Dysregulation Underlying the Onset of Alzheimer's Disease.
  22. Altmetric Badge
    Chapter 21 Systems Biology Approaches to the Study of Biological Networks Underlying Alzheimer's Disease: Role of miRNAs.
  23. Altmetric Badge
    Chapter 22 The Emerging Role of Metalloproteomics in Alzheimer’s Disease Research
  24. Altmetric Badge
    Chapter 23 Redox Proteomics in Human Biofluids: Sample Preparation, Separation and Immunochemical Tagging for Analysis of Protein Oxidation.
  25. Altmetric Badge
    Chapter 24 Advanced Shotgun Lipidomics for Characterization of Altered Lipid Patterns in Neurodegenerative Diseases and Brain Injury.
  26. Altmetric Badge
    Chapter 25 AlzPathway, an Updated Map of Curated Signaling Pathways: Towards Deciphering Alzheimer's Disease Pathogenesis.
  27. Altmetric Badge
    Chapter 26 A Computational Network Biology Approach to Uncover Novel Genes Related to Alzheimer's Disease.
  28. Altmetric Badge
    Chapter 27 Network Approaches to the Understanding of Alzheimer's Disease: From Model Organisms to Humans.
  29. Altmetric Badge
    Chapter 28 Characterization of Genetic Networks Associated with Alzheimer's Disease.
  30. Altmetric Badge
    Chapter 29 Network-Based Analysis for Uncovering Mechanisms Underlying Alzheimer's Disease.
  31. Altmetric Badge
    Chapter 30 The SDREM Method for Reconstructing Signaling and Regulatory Response Networks: Applications for Studying Disease Progression.
  32. Altmetric Badge
    Chapter 31 Advanced Neuroimaging Methods Towards Characterization of Early Stages of Alzheimer's Disease.
  33. Altmetric Badge
    Chapter 32 Plasma Proteomics Biomarkers in Alzheimer's Disease: Latest Advances and Challenges.
  34. Altmetric Badge
    Chapter 33 A Practical Guide for Exploring Opportunities of Repurposing Drugs for CNS Diseases in Systems Biology.
Attention for Chapter 1: Alzheimer's as a Systems-Level Disease Involving the Interplay of Multiple Cellular Networks.
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (87th percentile)
  • High Attention Score compared to outputs of the same age and source (94th percentile)

Mentioned by

news
1 news outlet
twitter
4 X users

Citations

dimensions_citation
13 Dimensions

Readers on

mendeley
64 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Alzheimer's as a Systems-Level Disease Involving the Interplay of Multiple Cellular Networks.
Chapter number 1
Book title
Systems Biology of Alzheimer's Disease
Published in
Methods in molecular biology, January 2016
DOI 10.1007/978-1-4939-2627-5_1
Pubmed ID
Book ISBNs
978-1-4939-2626-8, 978-1-4939-2627-5
Authors

Castrillo, Juan I, Oliver, Stephen G, Juan I. Castrillo, Stephen G. Oliver, Castrillo, Juan I., Oliver, Stephen G.

Editors

Juan I. Castrillo, Stephen G. Oliver

Abstract

Alzheimer's disease (AD), and many neurodegenerative disorders, are multifactorial in nature. They involve a combination of genomic, epigenomic, interactomic and environmental factors. Progress is being made, and these complex diseases are beginning to be understood as having their origin in altered states of biological networks at the cellular level. In the case of AD, genomic susceptibility and mechanisms leading to (or accompanying) the impairment of the central Amyloid Precursor Protein (APP) processing and tau networks are widely accepted as major contributors to the diseased state. The derangement of these networks may result in both the gain and loss of functions, increased generation of toxic species (e.g., toxic soluble oligomers and aggregates) and imbalances, whose effects can propagate to supra-cellular levels. Although well sustained by empirical data and widely accepted, this global perspective often overlooks the essential roles played by the main counteracting homeostatic networks (e.g., protein quality control/proteostasis, unfolded protein response, protein folding chaperone networks, disaggregases, ER-associated degradation/ubiquitin proteasome system, endolysosomal network, autophagy, and other stress-protective and clearance networks), whose relevance to AD is just beginning to be fully realized. In this chapter, an integrative perspective is presented. Alzheimer's disease is characterized to be a result of: (a) intrinsic genomic/epigenomic susceptibility and, (b) a continued dynamic interplay between the deranged networks and the central homeostatic networks of nerve cells. This interplay of networks will underlie both the onset and rate of progression of the disease in each individual. Integrative Systems Biology approaches are required to effect its elucidation. Comprehensive Systems Biology experiments at different 'omics levels in simple model organisms, engineered to recapitulate the basic features of AD may illuminate the onset and sequence of events underlying AD. Indeed, studies of models of AD in simple organisms, differentiated cells in culture and rodents are beginning to offer hope that the onset and progression of AD, if detected at an early stage, may be stopped, delayed, or even reversed, by activating or modulating networks involved in proteostasis and the clearance of toxic species. In practice, the incorporation of next-generation neuroimaging, high-throughput and computational approaches are opening the way towards early diagnosis well before irreversible cell death. Thus, the presence or co-occurrence of: (a) accumulation of toxic Aβ oligomers and tau species; (b) altered splicing and transcriptome patterns; (c) impaired redox, proteostatic, and metabolic networks together with, (d) compromised homeostatic capacities may constitute relevant 'AD hallmarks at the cellular level' towards reliable and early diagnosis. From here, preventive lifestyle changes and tailored therapies may be investigated, such as combined strategies aimed at both lowering the production of toxic species and potentiating homeostatic responses, in order to prevent or delay the onset, and arrest, alleviate, or even reverse the progression of the disease.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 64 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Belgium 1 2%
Canada 1 2%
Unknown 62 97%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 12 19%
Researcher 11 17%
Student > Bachelor 11 17%
Student > Master 8 13%
Other 5 8%
Other 7 11%
Unknown 10 16%
Readers by discipline Count As %
Neuroscience 13 20%
Agricultural and Biological Sciences 11 17%
Medicine and Dentistry 8 13%
Biochemistry, Genetics and Molecular Biology 5 8%
Psychology 5 8%
Other 12 19%
Unknown 10 16%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 11. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 04 March 2020.
All research outputs
#2,704,313
of 22,818,766 outputs
Outputs from Methods in molecular biology
#516
of 13,124 outputs
Outputs of similar age
#48,419
of 393,507 outputs
Outputs of similar age from Methods in molecular biology
#82
of 1,470 outputs
Altmetric has tracked 22,818,766 research outputs across all sources so far. Compared to these this one has done well and is in the 87th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 13,124 research outputs from this source. They receive a mean Attention Score of 3.4. This one has done particularly well, scoring higher than 95% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 393,507 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 87% of its contemporaries.
We're also able to compare this research output to 1,470 others from the same source and published within six weeks on either side of this one. This one has done particularly well, scoring higher than 94% of its contemporaries.