↓ Skip to main content

Intrinsically Disordered Proteins Studied by NMR Spectroscopy

Overview of attention for book
Cover of 'Intrinsically Disordered Proteins Studied by NMR Spectroscopy'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Back to the Future: Nuclear Magnetic Resonance and Bioinformatics Studies on Intrinsically Disordered Proteins.
  3. Altmetric Badge
    Chapter 2 Structure and Dynamics of Intrinsically Disordered Proteins.
  4. Altmetric Badge
    Chapter 3 NMR Methods for the Study of Instrinsically Disordered Proteins Structure, Dynamics, and Interactions: General Overview and Practical Guidelines
  5. Altmetric Badge
    Chapter 4 Ensemble Calculation for Intrinsically Disordered Proteins Using NMR Parameters
  6. Altmetric Badge
    Chapter 5 NMR Spectroscopic Studies of the Conformational Ensembles of Intrinsically Disordered Proteins.
  7. Altmetric Badge
    Chapter 6 Recombinant Intrinsically Disordered Proteins for NMR: Tips and Tricks.
  8. Altmetric Badge
    Chapter 7 Biophysical Methods to Investigate Intrinsically Disordered Proteins: Avoiding an "Elephant and Blind Men" Situation.
  9. Altmetric Badge
    Chapter 8 Application of SAXS for the Structural Characterization of IDPs
  10. Altmetric Badge
    Chapter 9 Bioinformatics Approaches for Predicting Disordered Protein Motifs
  11. Altmetric Badge
    Chapter 10 Towards Understanding Protein Disorder In-Cell
  12. Altmetric Badge
    Chapter 11 The Protein Ensemble Database
  13. Altmetric Badge
    Chapter 12 Order and Disorder in the Replicative Complex of Paramyxoviruses.
  14. Altmetric Badge
    Chapter 13 Druggability of Intrinsically Disordered Proteins.
  15. Altmetric Badge
    Chapter 14 Beta Amyloid Hallmarks: From Intrinsically Disordered Proteins to Alzheimer's Disease.
Attention for Chapter 8: Application of SAXS for the Structural Characterization of IDPs
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Above-average Attention Score compared to outputs of the same age and source (57th percentile)

Mentioned by

twitter
1 X user

Citations

dimensions_citation
50 Dimensions

Readers on

mendeley
55 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Application of SAXS for the Structural Characterization of IDPs
Chapter number 8
Book title
Intrinsically Disordered Proteins Studied by NMR Spectroscopy
Published in
Advances in experimental medicine and biology, September 2015
DOI 10.1007/978-3-319-20164-1_8
Pubmed ID
Book ISBNs
978-3-31-920163-4, 978-3-31-920164-1
Authors

Michael Kachala, Erica Valentini, Dmitri I. Svergun, Kachala, Michael, Valentini, Erica, Svergun, Dmitri I.

Abstract

Small-angle X-ray scattering (SAXS) is a powerful structural method allowing one to study the structure, folding state and flexibility of native particles and complexes in solution and to rapidly analyze structural changes in response to variations in external conditions. New high brilliance sources and novel data analysis methods significantly enhanced resolution and reliability of structural models provided by the technique. Automation of the SAXS experiment, data processing and interpretation make solution SAXS a streamline tool for large scale structural studies in molecular biology. The method provides low resolution macromolecular shapes ab initio and is readily combined with other structural and biochemical techniques in integrative studies. Very importantly, SAXS is sensitive to macromolecular flexibility being one of the few structural techniques applicable to flexible systems and intrinsically disordered proteins (IDPs). A major recent development is the use of SAXS to study particle dynamics in solution by ensemble approaches, which allow one to quantitatively characterize flexible systems. Of special interest is the joint use of SAXS with solution NMR, given that both methods yield highly complementary structural information, in particular, for IDPs. In this chapter, we present the basics of SAXS and also consider protocols of the experiment and data analysis for different scenarios depending on the type of the studied object. These include ab initio shape reconstruction, validation of available high resolution structures and rigid body modelling for folded macromolecules and also characterisation of flexible proteins with the ensemble methods. The methods are illustrated by examples of recent applications and further perspectives of the integrative use of SAXS with NMR in the studies of IDPs are discussed.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 55 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 55 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 18 33%
Researcher 6 11%
Student > Bachelor 5 9%
Student > Master 5 9%
Student > Postgraduate 4 7%
Other 4 7%
Unknown 13 24%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 17 31%
Chemistry 11 20%
Agricultural and Biological Sciences 8 15%
Computer Science 2 4%
Unspecified 1 2%
Other 2 4%
Unknown 14 25%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 22 September 2015.
All research outputs
#15,347,611
of 22,829,083 outputs
Outputs from Advances in experimental medicine and biology
#2,503
of 4,952 outputs
Outputs of similar age
#160,623
of 274,417 outputs
Outputs of similar age from Advances in experimental medicine and biology
#9
of 28 outputs
Altmetric has tracked 22,829,083 research outputs across all sources so far. This one is in the 22nd percentile – i.e., 22% of other outputs scored the same or lower than it.
So far Altmetric has tracked 4,952 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.0. This one is in the 37th percentile – i.e., 37% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 274,417 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 32nd percentile – i.e., 32% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 28 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 57% of its contemporaries.