↓ Skip to main content

Voltage-gated Sodium Channels: Structure, Function and Channelopathies

Overview of attention for book
Cover of 'Voltage-gated Sodium Channels: Structure, Function and Channelopathies'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 43 Cardiac Arrhythmias Related to Sodium Channel Dysfunction
  3. Altmetric Badge
    Chapter 44 Structural Models of Ligand-Bound Sodium Channels
  4. Altmetric Badge
    Chapter 45 The Cardiac Sodium Channel and Its Protein Partners
  5. Altmetric Badge
    Chapter 46 Effects of Benzothiazolamines on Voltage-Gated Sodium Channels
  6. Altmetric Badge
    Chapter 47 Sodium Channel Trafficking
  7. Altmetric Badge
    Chapter 48 Voltage-Gated Sodium Channel β Subunits and Their Related Diseases
  8. Altmetric Badge
    Chapter 52 Sodium Channelopathies of Skeletal Muscle
  9. Altmetric Badge
    Chapter 53 Regulation of Cardiac Voltage-Gated Sodium Channel by Kinases: Roles of Protein Kinases A and C
  10. Altmetric Badge
    Chapter 54 Gating Pore Currents in Sodium Channels
  11. Altmetric Badge
    Chapter 61 Structural and Functional Analysis of Sodium Channels Viewed from an Evolutionary Perspective
  12. Altmetric Badge
    Chapter 63 Calculating the Consequences of Left-Shifted Nav Channel Activity in Sick Excitable Cells
  13. Altmetric Badge
    Chapter 66 Toxins That Affect Voltage-Gated Sodium Channels
  14. Altmetric Badge
    Chapter 69 Posttranslational Modification of Sodium Channels
  15. Altmetric Badge
    Chapter 70 Evolutionary History of Voltage-Gated Sodium Channels
  16. Altmetric Badge
    Chapter 73 Mechanisms of Drug Binding to Voltage-Gated Sodium Channels
  17. Altmetric Badge
    Chapter 75 Mining Protein Evolution for Insights into Mechanisms of Voltage-Dependent Sodium Channel Auxiliary Subunits
  18. Altmetric Badge
    Chapter 91 Translational Model Systems for Complex Sodium Channel Pathophysiology in Pain
  19. Altmetric Badge
    Chapter 97 Selective Ligands and Drug Discovery Targeting the Voltage-Gated Sodium Channel Nav1.7
  20. Altmetric Badge
    Chapter 99 pH Modulation of Voltage-Gated Sodium Channels
Attention for Chapter 91: Translational Model Systems for Complex Sodium Channel Pathophysiology in Pain
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
15 Dimensions

Readers on

mendeley
20 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Translational Model Systems for Complex Sodium Channel Pathophysiology in Pain
Chapter number 91
Book title
Voltage-gated Sodium Channels: Structure, Function and Channelopathies
Published in
Handbook of experimental pharmacology, January 2018
DOI 10.1007/164_2017_91
Pubmed ID
Book ISBNs
978-3-31-990283-8, 978-3-31-990284-5
Authors

Katrin Schrenk-Siemens, Corinna Rösseler, Angelika Lampert, Schrenk-Siemens, Katrin, Rösseler, Corinna, Lampert, Angelika

Abstract

Chronic pain patients are often left with insufficient treatment as the pathophysiology especially of neuropathic pain remains enigmatic. Recently, genetic variations in the genes of the voltage-gated sodium channels (Navs) were linked to inherited neuropathic pain syndromes, opening a research pathway to foster our understanding of the pathophysiology of neuropathic pain. More than 10 years ago, the rare, inherited pain syndrome erythromelalgia was linked to mutations in the subtype Nav1.7, and since then a plethora of mutations and genetic variations in this and other Nav genes were identified. Often the biophysical changes induced by the genetic alteration offer a straightforward explanation for the clinical symptoms, but mutations in some channels, especially Nav1.9, paint a more complex picture. Although efforts were undertaken to significantly advance our knowledge, translation from heterologous or animal model systems to humans remains a challenge. Here we present recent advances in translation using stem cell-derived human sensory neurons and their potential application for identification of better, effective, and more precise treatment for the individual pain patient.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 20 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 20 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 4 20%
Student > Master 4 20%
Student > Doctoral Student 3 15%
Researcher 2 10%
Professor 1 5%
Other 1 5%
Unknown 5 25%
Readers by discipline Count As %
Neuroscience 6 30%
Medicine and Dentistry 3 15%
Veterinary Science and Veterinary Medicine 2 10%
Nursing and Health Professions 1 5%
Business, Management and Accounting 1 5%
Other 1 5%
Unknown 6 30%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 26 September 2018.
All research outputs
#15,535,385
of 23,088,369 outputs
Outputs from Handbook of experimental pharmacology
#398
of 648 outputs
Outputs of similar age
#270,124
of 442,629 outputs
Outputs of similar age from Handbook of experimental pharmacology
#13
of 23 outputs
Altmetric has tracked 23,088,369 research outputs across all sources so far. This one is in the 22nd percentile – i.e., 22% of other outputs scored the same or lower than it.
So far Altmetric has tracked 648 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 9.4. This one is in the 25th percentile – i.e., 25% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 442,629 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 29th percentile – i.e., 29% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 23 others from the same source and published within six weeks on either side of this one. This one is in the 21st percentile – i.e., 21% of its contemporaries scored the same or lower than it.