↓ Skip to main content

Voltage-gated Sodium Channels: Structure, Function and Channelopathies

Overview of attention for book
Cover of 'Voltage-gated Sodium Channels: Structure, Function and Channelopathies'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 43 Cardiac Arrhythmias Related to Sodium Channel Dysfunction
  3. Altmetric Badge
    Chapter 44 Structural Models of Ligand-Bound Sodium Channels
  4. Altmetric Badge
    Chapter 45 The Cardiac Sodium Channel and Its Protein Partners
  5. Altmetric Badge
    Chapter 46 Effects of Benzothiazolamines on Voltage-Gated Sodium Channels
  6. Altmetric Badge
    Chapter 47 Sodium Channel Trafficking
  7. Altmetric Badge
    Chapter 48 Voltage-Gated Sodium Channel β Subunits and Their Related Diseases
  8. Altmetric Badge
    Chapter 52 Sodium Channelopathies of Skeletal Muscle
  9. Altmetric Badge
    Chapter 53 Regulation of Cardiac Voltage-Gated Sodium Channel by Kinases: Roles of Protein Kinases A and C
  10. Altmetric Badge
    Chapter 54 Gating Pore Currents in Sodium Channels
  11. Altmetric Badge
    Chapter 61 Structural and Functional Analysis of Sodium Channels Viewed from an Evolutionary Perspective
  12. Altmetric Badge
    Chapter 63 Calculating the Consequences of Left-Shifted Nav Channel Activity in Sick Excitable Cells
  13. Altmetric Badge
    Chapter 66 Toxins That Affect Voltage-Gated Sodium Channels
  14. Altmetric Badge
    Chapter 69 Posttranslational Modification of Sodium Channels
  15. Altmetric Badge
    Chapter 70 Evolutionary History of Voltage-Gated Sodium Channels
  16. Altmetric Badge
    Chapter 73 Mechanisms of Drug Binding to Voltage-Gated Sodium Channels
  17. Altmetric Badge
    Chapter 75 Mining Protein Evolution for Insights into Mechanisms of Voltage-Dependent Sodium Channel Auxiliary Subunits
  18. Altmetric Badge
    Chapter 91 Translational Model Systems for Complex Sodium Channel Pathophysiology in Pain
  19. Altmetric Badge
    Chapter 97 Selective Ligands and Drug Discovery Targeting the Voltage-Gated Sodium Channel Nav1.7
  20. Altmetric Badge
    Chapter 99 pH Modulation of Voltage-Gated Sodium Channels
Attention for Chapter 73: Mechanisms of Drug Binding to Voltage-Gated Sodium Channels
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
15 Dimensions

Readers on

mendeley
35 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Mechanisms of Drug Binding to Voltage-Gated Sodium Channels
Chapter number 73
Book title
Voltage-gated Sodium Channels: Structure, Function and Channelopathies
Published in
Handbook of experimental pharmacology, January 2017
DOI 10.1007/164_2017_73
Pubmed ID
Book ISBNs
978-3-31-990283-8, 978-3-31-990284-5
Authors

M. E. O’Leary, M. Chahine, O’Leary, M. E., Chahine, M.

Abstract

Voltage-gated sodium (Na(+)) channels are expressed in virtually all electrically excitable tissues and are essential for muscle contraction and the conduction of impulses within the peripheral and central nervous systems. Genetic disorders that disrupt the function of these channels produce an array of Na(+) channelopathies resulting in neuronal impairment, chronic pain, neuromuscular pathologies, and cardiac arrhythmias. Because of their importance to the conduction of electrical signals, Na(+) channels are the target of a wide variety of local anesthetic, antiarrhythmic, anticonvulsant, and antidepressant drugs. The voltage-gated family of Na(+) channels is composed of α-subunits that encode for the voltage sensor domains and the Na(+)-selective permeation pore. In vivo, Na(+) channel α-subunits are associated with one or more accessory β-subunits (β1-β4) that regulate gating properties, trafficking, and cell-surface expression of the channels. The permeation pore of Na(+) channels is divided in two parts: the outer mouth of the pore is the site of the ion selectivity filter, while the inner cytoplasmic pore serves as the channel activation gate. The cytoplasmic lining of the permeation pore is formed by the S6 segments that include highly conserved aromatic amino acids important for drug binding. These residues are believed to undergo voltage-dependent conformational changes that alter drug binding as the channels cycle through the closed, open, and inactivated states. The purpose of this chapter is to broadly review the mechanisms of Na(+) channel gating and the models used to describe drug binding and Na(+) channel inhibition.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 35 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 35 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 8 23%
Student > Bachelor 7 20%
Researcher 3 9%
Professor 2 6%
Student > Doctoral Student 2 6%
Other 6 17%
Unknown 7 20%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 7 20%
Neuroscience 4 11%
Chemistry 3 9%
Agricultural and Biological Sciences 3 9%
Medicine and Dentistry 3 9%
Other 7 20%
Unknown 8 23%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 16 November 2017.
All research outputs
#20,452,930
of 23,008,860 outputs
Outputs from Handbook of experimental pharmacology
#573
of 647 outputs
Outputs of similar age
#356,198
of 421,267 outputs
Outputs of similar age from Handbook of experimental pharmacology
#29
of 31 outputs
Altmetric has tracked 23,008,860 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 647 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 9.4. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 421,267 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 31 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.