↓ Skip to main content

Voltage-gated Sodium Channels: Structure, Function and Channelopathies

Overview of attention for book
Cover of 'Voltage-gated Sodium Channels: Structure, Function and Channelopathies'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 43 Cardiac Arrhythmias Related to Sodium Channel Dysfunction
  3. Altmetric Badge
    Chapter 44 Structural Models of Ligand-Bound Sodium Channels
  4. Altmetric Badge
    Chapter 45 The Cardiac Sodium Channel and Its Protein Partners
  5. Altmetric Badge
    Chapter 46 Effects of Benzothiazolamines on Voltage-Gated Sodium Channels
  6. Altmetric Badge
    Chapter 47 Sodium Channel Trafficking
  7. Altmetric Badge
    Chapter 48 Voltage-Gated Sodium Channel β Subunits and Their Related Diseases
  8. Altmetric Badge
    Chapter 52 Sodium Channelopathies of Skeletal Muscle
  9. Altmetric Badge
    Chapter 53 Regulation of Cardiac Voltage-Gated Sodium Channel by Kinases: Roles of Protein Kinases A and C
  10. Altmetric Badge
    Chapter 54 Gating Pore Currents in Sodium Channels
  11. Altmetric Badge
    Chapter 61 Structural and Functional Analysis of Sodium Channels Viewed from an Evolutionary Perspective
  12. Altmetric Badge
    Chapter 63 Calculating the Consequences of Left-Shifted Nav Channel Activity in Sick Excitable Cells
  13. Altmetric Badge
    Chapter 66 Toxins That Affect Voltage-Gated Sodium Channels
  14. Altmetric Badge
    Chapter 69 Posttranslational Modification of Sodium Channels
  15. Altmetric Badge
    Chapter 70 Evolutionary History of Voltage-Gated Sodium Channels
  16. Altmetric Badge
    Chapter 73 Mechanisms of Drug Binding to Voltage-Gated Sodium Channels
  17. Altmetric Badge
    Chapter 75 Mining Protein Evolution for Insights into Mechanisms of Voltage-Dependent Sodium Channel Auxiliary Subunits
  18. Altmetric Badge
    Chapter 91 Translational Model Systems for Complex Sodium Channel Pathophysiology in Pain
  19. Altmetric Badge
    Chapter 97 Selective Ligands and Drug Discovery Targeting the Voltage-Gated Sodium Channel Nav1.7
  20. Altmetric Badge
    Chapter 99 pH Modulation of Voltage-Gated Sodium Channels
Attention for Chapter 46: Effects of Benzothiazolamines on Voltage-Gated Sodium Channels
Altmetric Badge

Citations

dimensions_citation
15 Dimensions

Readers on

mendeley
9 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Effects of Benzothiazolamines on Voltage-Gated Sodium Channels
Chapter number 46
Book title
Voltage-gated Sodium Channels: Structure, Function and Channelopathies
Published in
Handbook of experimental pharmacology, January 2017
DOI 10.1007/164_2017_46
Pubmed ID
Book ISBNs
978-3-31-990283-8, 978-3-31-990284-5
Authors

Alessandro Farinato, Concetta Altamura, Jean-François Desaphy, Farinato, Alessandro, Altamura, Concetta, Desaphy, Jean-François

Abstract

Benzothiazole is a versatile fused heterocycle that aroused much interest in drug discovery as anticonvulsant, neuroprotective, analgesic, anti-inflammatory, antimicrobial, and anticancer. Two benzothiazolamines, riluzole and lubeluzole, are known blockers of voltage-gated sodium (Nav) channels. Riluzole is clinically used as a neuroprotectant in amyotrophic lateral sclerosis. Inhibition of Nav channels by riluzole is voltage-dependent due to preferential binding to inactivated sodium channels. Yet the drug exerts little use-dependent block, probably because it lacks protonable amine. One important property is riluzole ability to inhibit persistent Na+ currents, which likely contributes to its neuroprotective activity. Lubeluzole showed promising neuroprotective effects in animal stroke models, but failed to show benefits in acute ischemic stroke in humans. One important concern is its propensity to prolong the cardiac QT interval, due to hERG K+ channel block. Lubeluzole very potently inhibits Nav channels in a voltage- and use-dependent manner, due to its great preferential affinity for inactivated channels and the presence of a protonable amine group. Patch-clamp experiments suggest that the binding sites of both drugs overlap the local anesthetic receptor within the ion-conducting pathway. Riluzole and lubeluzole displayed very potent antimyotonic activity in a rat model of myotonia, a pathological skeletal muscle condition characterized by high-frequency runs of action potentials. Such results well support the repurposing of riluzole as an antimyotonic drug, allowing the launch of a pilot study in myotonic patients. Riluzole, lubeluzole, and new Nav channel blockers built on the benzothiazolamine scaffold will certainly continue to be investigated for possible clinical applications.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 9 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 9 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 3 33%
Unspecified 1 11%
Professor > Associate Professor 1 11%
Researcher 1 11%
Student > Doctoral Student 1 11%
Other 0 0%
Unknown 2 22%
Readers by discipline Count As %
Neuroscience 2 22%
Biochemistry, Genetics and Molecular Biology 1 11%
Unspecified 1 11%
Computer Science 1 11%
Medicine and Dentistry 1 11%
Other 0 0%
Unknown 3 33%