↓ Skip to main content

Voltage-gated Sodium Channels: Structure, Function and Channelopathies

Overview of attention for book
Cover of 'Voltage-gated Sodium Channels: Structure, Function and Channelopathies'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 43 Cardiac Arrhythmias Related to Sodium Channel Dysfunction
  3. Altmetric Badge
    Chapter 44 Structural Models of Ligand-Bound Sodium Channels
  4. Altmetric Badge
    Chapter 45 The Cardiac Sodium Channel and Its Protein Partners
  5. Altmetric Badge
    Chapter 46 Effects of Benzothiazolamines on Voltage-Gated Sodium Channels
  6. Altmetric Badge
    Chapter 47 Sodium Channel Trafficking
  7. Altmetric Badge
    Chapter 48 Voltage-Gated Sodium Channel β Subunits and Their Related Diseases
  8. Altmetric Badge
    Chapter 52 Sodium Channelopathies of Skeletal Muscle
  9. Altmetric Badge
    Chapter 53 Regulation of Cardiac Voltage-Gated Sodium Channel by Kinases: Roles of Protein Kinases A and C
  10. Altmetric Badge
    Chapter 54 Gating Pore Currents in Sodium Channels
  11. Altmetric Badge
    Chapter 61 Structural and Functional Analysis of Sodium Channels Viewed from an Evolutionary Perspective
  12. Altmetric Badge
    Chapter 63 Calculating the Consequences of Left-Shifted Nav Channel Activity in Sick Excitable Cells
  13. Altmetric Badge
    Chapter 66 Toxins That Affect Voltage-Gated Sodium Channels
  14. Altmetric Badge
    Chapter 69 Posttranslational Modification of Sodium Channels
  15. Altmetric Badge
    Chapter 70 Evolutionary History of Voltage-Gated Sodium Channels
  16. Altmetric Badge
    Chapter 73 Mechanisms of Drug Binding to Voltage-Gated Sodium Channels
  17. Altmetric Badge
    Chapter 75 Mining Protein Evolution for Insights into Mechanisms of Voltage-Dependent Sodium Channel Auxiliary Subunits
  18. Altmetric Badge
    Chapter 91 Translational Model Systems for Complex Sodium Channel Pathophysiology in Pain
  19. Altmetric Badge
    Chapter 97 Selective Ligands and Drug Discovery Targeting the Voltage-Gated Sodium Channel Nav1.7
  20. Altmetric Badge
    Chapter 99 pH Modulation of Voltage-Gated Sodium Channels
Attention for Chapter 99: pH Modulation of Voltage-Gated Sodium Channels
Altmetric Badge

About this Attention Score

  • Good Attention Score compared to outputs of the same age (71st percentile)
  • Good Attention Score compared to outputs of the same age and source (78th percentile)

Mentioned by

twitter
2 X users
wikipedia
2 Wikipedia pages

Readers on

mendeley
21 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
pH Modulation of Voltage-Gated Sodium Channels
Chapter number 99
Book title
Voltage-gated Sodium Channels: Structure, Function and Channelopathies
Published in
Handbook of experimental pharmacology, January 2018
DOI 10.1007/164_2018_99
Pubmed ID
Book ISBNs
978-3-31-990283-8, 978-3-31-990284-5
Authors

Colin H. Peters, Mohammad-Reza Ghovanloo, Cynthia Gershome, Peter C. Ruben, Peters, Colin H., Ghovanloo, Mohammad-Reza, Gershome, Cynthia, Ruben, Peter C.

Abstract

Changes in blood and tissue pH accompany physiological and pathophysiological conditions including exercise, cardiac ischemia, ischemic stroke, and cocaine ingestion. These conditions are known to trigger the symptoms of electrical diseases in patients carrying sodium channel mutations. Protons cause a diverse set of changes to sodium channel gating, which generally lead to decreases in the amplitude of the transient sodium current and increases in the fraction of non-inactivating channels that pass persistent currents. These effects are shared with disease-causing mutants in neuronal, skeletal muscle, and cardiac tissue and may be compounded in mutants that impart greater proton sensitivity to sodium channels, suggesting a role of protons in triggering acute symptoms of electrical disease.In this chapter, we review the mechanisms of proton block of the sodium channel pore and a suggested mode of action by which protons alter channel gating. We discuss the available data on isoform specificity of proton effects and tissue level effects. Finally, we review the role that protons play in disease and our own recent studies on proton-sensitizing mutants in cardiac and skeletal muscle sodium channels.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 21 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 21 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 5 24%
Researcher 2 10%
Student > Doctoral Student 1 5%
Student > Bachelor 1 5%
Professor 1 5%
Other 3 14%
Unknown 8 38%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 5 24%
Pharmacology, Toxicology and Pharmaceutical Science 3 14%
Medicine and Dentistry 2 10%
Agricultural and Biological Sciences 1 5%
Physics and Astronomy 1 5%
Other 1 5%
Unknown 8 38%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 5. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 07 December 2019.
All research outputs
#6,224,854
of 23,043,346 outputs
Outputs from Handbook of experimental pharmacology
#178
of 647 outputs
Outputs of similar age
#125,483
of 442,416 outputs
Outputs of similar age from Handbook of experimental pharmacology
#5
of 23 outputs
Altmetric has tracked 23,043,346 research outputs across all sources so far. This one has received more attention than most of these and is in the 72nd percentile.
So far Altmetric has tracked 647 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 9.4. This one has gotten more attention than average, scoring higher than 71% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 442,416 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 71% of its contemporaries.
We're also able to compare this research output to 23 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 78% of its contemporaries.