↓ Skip to main content

Huntington’s Disease

Overview of attention for book
Huntington’s Disease
Springer New York

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Stereological Methods to Quantify Cell Loss in the Huntington’s Disease Human Brain
  3. Altmetric Badge
    Chapter 2 Assessing Autophagic Activity and Aggregate Formation of Mutant Huntingtin in Mammalian Cells
  4. Altmetric Badge
    Chapter 3 A Filter Retardation Assay Facilitates the Detection and Quantification of Heat-Stable, Amyloidogenic Mutant Huntingtin Aggregates in Complex Biosamples
  5. Altmetric Badge
    Chapter 4 Cellular Models: HD Patient-Derived Pluripotent Stem Cells
  6. Altmetric Badge
    Chapter 6 Mouse Models of Huntington’s Disease
  7. Altmetric Badge
    Chapter 8 Automated Operant Assessments of Huntington’s Disease Mouse Models
  8. Altmetric Badge
    Chapter 10 Murine Models of Huntington’s Disease for Evaluating Therapeutics
  9. Altmetric Badge
    Chapter 11 Generating Excitotoxic Lesion Models of Huntington’s Disease
  10. Altmetric Badge
    Chapter 12 Large-Brained Animal Models of Huntington’s Disease: Sheep
  11. Altmetric Badge
    Chapter 14 Nonhuman Primate Models of Huntington’s Disease and Their Application in Translational Research
  12. Altmetric Badge
    Chapter 15 In Vivo Multidimensional Brain Imaging in Huntington’s Disease Animal Models
  13. Altmetric Badge
    Chapter 16 Magnetic Resonance Imaging in Huntington’s Disease
  14. Altmetric Badge
    Chapter 17 Biofluid Biomarkers in Huntington’s Disease
  15. Altmetric Badge
    Chapter 18 Assessing and Modulating Kynurenine Pathway Dynamics in Huntington’s Disease: Focus on Kynurenine 3-Monooxygenase
  16. Altmetric Badge
    Chapter 20 Using Genomic Data to Find Disease-Modifying Loci in Huntington’s Disease (HD)
  17. Altmetric Badge
    Chapter 22 Methods for Assessing DNA Repair and Repeat Expansion in Huntington’s Disease
  18. Altmetric Badge
    Chapter 23 Translating Antisense Technology into a Treatment for Huntington’s Disease
  19. Altmetric Badge
    Chapter 26 Dissection and Preparation of Human Primary Fetal Ganglionic Eminence Tissue for Research and Clinical Applications
  20. Altmetric Badge
    Chapter 28 Quality Assessment and Production of Human Cells for Clinical Use
  21. Altmetric Badge
    Chapter 29 Erratum to: Large-Brained Animal Models of Huntington’s Disease: Sheep
Attention for Chapter 18: Assessing and Modulating Kynurenine Pathway Dynamics in Huntington’s Disease: Focus on Kynurenine 3-Monooxygenase
Altmetric Badge

Mentioned by

twitter
1 X user

Readers on

mendeley
12 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Assessing and Modulating Kynurenine Pathway Dynamics in Huntington’s Disease: Focus on Kynurenine 3-Monooxygenase
Chapter number 18
Book title
Huntington’s Disease
Published in
Methods in molecular biology, January 2018
DOI 10.1007/978-1-4939-7825-0_18
Pubmed ID
Book ISBNs
978-1-4939-7824-3, 978-1-4939-7825-0
Authors

Korrapati V. Sathyasaikumar, Carlo Breda, Robert Schwarcz, Flaviano Giorgini, Sathyasaikumar, Korrapati V., Breda, Carlo, Schwarcz, Robert, Giorgini, Flaviano

Abstract

The link between disturbances in kynurenine pathway (KP) metabolism and Huntington's disease (HD) pathogenesis has been explored for a number of years. Several novel genetic and pharmacological tools have recently been developed to modulate key regulatory steps in the KP such as the reaction catalyzed by the enzyme kynurenine 3-monooxygenase (KMO). This insight has offered new options for exploring the mechanistic link between this metabolic pathway and HD, and provided novel opportunities for the development of candidate drug-like compounds. Here, we present an overview of the field, focusing on some novel approaches for interrogating the pathway experimentally.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 12 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 12 100%

Demographic breakdown

Readers by professional status Count As %
Student > Postgraduate 3 25%
Student > Master 2 17%
Researcher 2 17%
Student > Ph. D. Student 1 8%
Student > Bachelor 1 8%
Other 0 0%
Unknown 3 25%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 3 25%
Neuroscience 3 25%
Computer Science 1 8%
Medicine and Dentistry 1 8%
Unknown 4 33%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 03 June 2018.
All research outputs
#20,518,141
of 23,085,832 outputs
Outputs from Methods in molecular biology
#9,974
of 13,205 outputs
Outputs of similar age
#378,465
of 442,628 outputs
Outputs of similar age from Methods in molecular biology
#1,194
of 1,499 outputs
Altmetric has tracked 23,085,832 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 13,205 research outputs from this source. They receive a mean Attention Score of 3.4. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 442,628 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 1,499 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.