↓ Skip to main content

Huntington’s Disease

Overview of attention for book
Huntington’s Disease
Springer New York

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Stereological Methods to Quantify Cell Loss in the Huntington’s Disease Human Brain
  3. Altmetric Badge
    Chapter 2 Assessing Autophagic Activity and Aggregate Formation of Mutant Huntingtin in Mammalian Cells
  4. Altmetric Badge
    Chapter 3 A Filter Retardation Assay Facilitates the Detection and Quantification of Heat-Stable, Amyloidogenic Mutant Huntingtin Aggregates in Complex Biosamples
  5. Altmetric Badge
    Chapter 4 Cellular Models: HD Patient-Derived Pluripotent Stem Cells
  6. Altmetric Badge
    Chapter 6 Mouse Models of Huntington’s Disease
  7. Altmetric Badge
    Chapter 8 Automated Operant Assessments of Huntington’s Disease Mouse Models
  8. Altmetric Badge
    Chapter 10 Murine Models of Huntington’s Disease for Evaluating Therapeutics
  9. Altmetric Badge
    Chapter 11 Generating Excitotoxic Lesion Models of Huntington’s Disease
  10. Altmetric Badge
    Chapter 12 Large-Brained Animal Models of Huntington’s Disease: Sheep
  11. Altmetric Badge
    Chapter 14 Nonhuman Primate Models of Huntington’s Disease and Their Application in Translational Research
  12. Altmetric Badge
    Chapter 15 In Vivo Multidimensional Brain Imaging in Huntington’s Disease Animal Models
  13. Altmetric Badge
    Chapter 16 Magnetic Resonance Imaging in Huntington’s Disease
  14. Altmetric Badge
    Chapter 17 Biofluid Biomarkers in Huntington’s Disease
  15. Altmetric Badge
    Chapter 18 Assessing and Modulating Kynurenine Pathway Dynamics in Huntington’s Disease: Focus on Kynurenine 3-Monooxygenase
  16. Altmetric Badge
    Chapter 20 Using Genomic Data to Find Disease-Modifying Loci in Huntington’s Disease (HD)
  17. Altmetric Badge
    Chapter 22 Methods for Assessing DNA Repair and Repeat Expansion in Huntington’s Disease
  18. Altmetric Badge
    Chapter 23 Translating Antisense Technology into a Treatment for Huntington’s Disease
  19. Altmetric Badge
    Chapter 26 Dissection and Preparation of Human Primary Fetal Ganglionic Eminence Tissue for Research and Clinical Applications
  20. Altmetric Badge
    Chapter 28 Quality Assessment and Production of Human Cells for Clinical Use
  21. Altmetric Badge
    Chapter 29 Erratum to: Large-Brained Animal Models of Huntington’s Disease: Sheep
Attention for Chapter 15: In Vivo Multidimensional Brain Imaging in Huntington’s Disease Animal Models
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (82nd percentile)
  • High Attention Score compared to outputs of the same age and source (95th percentile)

Mentioned by

news
1 news outlet
twitter
1 X user

Readers on

mendeley
15 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
In Vivo Multidimensional Brain Imaging in Huntington’s Disease Animal Models
Chapter number 15
Book title
Huntington’s Disease
Published in
Methods in molecular biology, January 2018
DOI 10.1007/978-1-4939-7825-0_15
Pubmed ID
Book ISBNs
978-1-4939-7824-3, 978-1-4939-7825-0
Authors

Julien Flament, Philippe Hantraye, Julien Valette, Flament, Julien, Hantraye, Philippe, Valette, Julien

Abstract

Huntington's disease (HD) is a genetic neurodegenerative disorder caused by an abnormal expansion of a CAG repeat located in the gene encoding for huntingtin protein. This mutation induces the expression of a polyglutamine stretch in the mutated protein resulting in the modification of various biological properties of the wild-type protein and the progressive appearance of motor, cognitive, and psychiatric disorders that are typically associated to this condition. Although the exact neuropathological mechanisms of degeneration are still not fully understood, HD pathology is characterized by severe neuronal losses in various brain regions including the basal ganglia and many cortical areas. Early signs of astrogliosis may precede actual neuronal degeneration. Early metabolic impairment at least in part associated with mitochondrial complex II deficiency may play a key role in huntingtin-induced mechanisms of neurodegeneration. Clinical trials are actively prepared including various gene-silencing approaches aiming at decreasing mutated huntingtin production. However, with the lack of a specific imaging biomarker capable of visualizing mutated huntingtin or huntingtin aggregates, there is a need for surrogate markers of huntingtin neurodegeneration. MRI and caudate nucleus atrophy is one of the most sensitive imaging biomarkers of HD. As such it can be used as a means to study disease progression and potential halting of the neurodegenerative process by therapeutic intervention, but this marker relies on actual neuronal loss which is a somewhat a late event in the pathology. As a means to develop, characterize and evaluate new, potentially earlier biomarkers of HD pathology we have recently embarked on a series of NMR developments looking for brain imaging techniques that allow for noninvasive longitudinal evaluation/characterization of functional alterations in animal models of HD. This chapter describes an assemblage of innovative NMR methods that have proved useful in detecting pathological cell dysfunctions in various preclinical models of HD.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 15 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 15 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 3 20%
Student > Bachelor 2 13%
Student > Doctoral Student 2 13%
Other 1 7%
Lecturer 1 7%
Other 1 7%
Unknown 5 33%
Readers by discipline Count As %
Medicine and Dentistry 4 27%
Neuroscience 3 20%
Psychology 2 13%
Unknown 6 40%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 10. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 15 June 2018.
All research outputs
#3,245,977
of 23,085,832 outputs
Outputs from Methods in molecular biology
#748
of 13,205 outputs
Outputs of similar age
#74,754
of 442,605 outputs
Outputs of similar age from Methods in molecular biology
#54
of 1,499 outputs
Altmetric has tracked 23,085,832 research outputs across all sources so far. Compared to these this one has done well and is in the 85th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 13,205 research outputs from this source. They receive a mean Attention Score of 3.4. This one has done particularly well, scoring higher than 94% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 442,605 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 82% of its contemporaries.
We're also able to compare this research output to 1,499 others from the same source and published within six weeks on either side of this one. This one has done particularly well, scoring higher than 95% of its contemporaries.