↓ Skip to main content

Zic family

Overview of attention for book
Attention for Chapter 18: Role of Zic Family Proteins in Transcriptional Regulation and Chromatin Remodeling
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Good Attention Score compared to outputs of the same age and source (66th percentile)

Mentioned by

twitter
3 X users

Citations

dimensions_citation
5 Dimensions

Readers on

mendeley
13 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Role of Zic Family Proteins in Transcriptional Regulation and Chromatin Remodeling
Chapter number 18
Book title
Zic family
Published in
Advances in experimental medicine and biology, January 2018
DOI 10.1007/978-981-10-7311-3_18
Pubmed ID
Book ISBNs
978-9-81-107310-6, 978-9-81-107311-3
Authors

Minoru Hatayama, Jun Aruga, Hatayama, Minoru, Aruga, Jun

Abstract

Proper functions of Zic proteins are essential for animals in health and disease. Here, we summarize our current understanding of the molecular properties and functions of the Zic family across animal species and paralog subtypes. Zics are basic proteins with some posttranslational modifications and can move to the cell nucleus via importin- and CRM1-based nucleocytoplasmic shuttling mechanisms. Degradation is mediated by the ubiquitin proteasome system. Many Zic proteins are capable of binding to two types of target DNA sequences (CTGCTG-core-type and GC-stretch-type). Recent chromatin immunoprecipitation assays showed that CTGCTG-core-type target sequences are enriched in enhancers. Nonetheless, the DNA binding is not always required for transcriptional regulation by Zic proteins. On the other hand, Zic proteins bind many proteins including transcription factors (Gli1-3, Tcf1 or Tcf4, Smad2 or Smad3, Oct4, Pax3, Cdx, and SRF), chromatin-remodeling factors (NuRD and NURF), and other nuclear enzymes (DNA-PK, PARP1, and RNA helicase A). Zic family-mediated gene expression control involves both their actions near the transcription start site and those affecting the global gene expression via binding to enhancers. Although Zic proteins perform essential functions in transcriptional regulation of Oct4 and Nanog expression via their promoters, recent genome-wide analyses of the Zic-binding sites and their downstream targets indicate that Zic proteins are associated with distant regulatory elements and are the critical enhancer-priming nuclear regulators in organismal development. Chromatin-remodeling complexes such as NuRD and NURF that interact with Zic proteins have been shown to participate in Zic-mediated enhancer regulation.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 13 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 13 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 4 31%
Student > Ph. D. Student 3 23%
Student > Master 2 15%
Student > Postgraduate 1 8%
Unspecified 1 8%
Other 0 0%
Unknown 2 15%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 5 38%
Agricultural and Biological Sciences 2 15%
Unspecified 1 8%
Social Sciences 1 8%
Neuroscience 1 8%
Other 1 8%
Unknown 2 15%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 10 July 2018.
All research outputs
#14,313,425
of 23,023,224 outputs
Outputs from Advances in experimental medicine and biology
#2,088
of 4,966 outputs
Outputs of similar age
#238,754
of 442,364 outputs
Outputs of similar age from Advances in experimental medicine and biology
#79
of 237 outputs
Altmetric has tracked 23,023,224 research outputs across all sources so far. This one is in the 37th percentile – i.e., 37% of other outputs scored the same or lower than it.
So far Altmetric has tracked 4,966 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.1. This one has gotten more attention than average, scoring higher than 57% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 442,364 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 45th percentile – i.e., 45% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 237 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 66% of its contemporaries.