↓ Skip to main content

Polyglutamine Disorders

Overview of attention for book
Cover of 'Polyglutamine Disorders'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Clinical Features of Huntington’s Disease
  3. Altmetric Badge
    Chapter 2 Genetic Rodent Models of Huntington Disease
  4. Altmetric Badge
    Chapter 3 Mitochondrial Dysfunction in Huntington’s Disease
  5. Altmetric Badge
    Chapter 4 RNA Related Pathology in Huntington’s Disease
  6. Altmetric Badge
    Chapter 5 X-Linked Spinal and Bulbar Muscular Atrophy: From Clinical Genetic Features and Molecular Pathology to Mechanisms Underlying Disease Toxicity
  7. Altmetric Badge
    Chapter 6 Spinocerebellar Ataxia Type 1: Molecular Mechanisms of Neurodegeneration and Preclinical Studies
  8. Altmetric Badge
    Chapter 7 Spinocerebellum Ataxia Type 6: Molecular Mechanisms and Calcium Channel Genetics
  9. Altmetric Badge
    Chapter 8 Spinocerebellar Ataxia Type 2
  10. Altmetric Badge
    Chapter 9 Molecular Mechanisms and Therapeutic Strategies in Spinocerebellar Ataxia Type 7
  11. Altmetric Badge
    Chapter 10 Spinocerebellar Ataxia Type 17 (SCA17)
  12. Altmetric Badge
    Chapter 11 The Neuropathology of Spinocerebellar Ataxia Type 3/Machado-Joseph Disease
  13. Altmetric Badge
    Chapter 12 Origins and Spread of Machado-Joseph Disease Ancestral Mutations Events
  14. Altmetric Badge
    Chapter 13 Clinical Features of Machado-Joseph Disease
  15. Altmetric Badge
    Chapter 14 Polyglutamine-Independent Features in Ataxin-3 Aggregation and Pathogenesis of Machado-Joseph Disease
  16. Altmetric Badge
    Chapter 15 Animal Models of Machado-Joseph Disease
  17. Altmetric Badge
    Chapter 16 Towards the Identification of Molecular Biomarkers of Spinocerebellar Ataxia Type 3 (SCA3)/Machado-Joseph Disease (MJD)
  18. Altmetric Badge
    Chapter 17 Planning Future Clinical Trials for Machado-Joseph Disease
  19. Altmetric Badge
    Chapter 18 Molecular Mechanisms and Cellular Pathways Implicated in Machado-Joseph Disease Pathogenesis
  20. Altmetric Badge
    Chapter 19 Pharmacological Therapies for Machado-Joseph Disease
  21. Altmetric Badge
    Chapter 20 Gene Therapies for Polyglutamine Diseases
  22. Altmetric Badge
    Chapter 21 Stem Cell-Based Therapies for Polyglutamine Diseases
Attention for Chapter 19: Pharmacological Therapies for Machado-Joseph Disease
Altmetric Badge

About this Attention Score

  • Above-average Attention Score compared to outputs of the same age (54th percentile)
  • High Attention Score compared to outputs of the same age and source (80th percentile)

Mentioned by

twitter
5 X users

Citations

dimensions_citation
10 Dimensions

Readers on

mendeley
46 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Pharmacological Therapies for Machado-Joseph Disease
Chapter number 19
Book title
Polyglutamine Disorders
Published in
Advances in experimental medicine and biology, January 2018
DOI 10.1007/978-3-319-71779-1_19
Pubmed ID
Book ISBNs
978-3-31-971778-4, 978-3-31-971779-1
Authors

Sara Duarte-Silva, Patrícia Maciel, Duarte-Silva, Sara, Maciel, Patrícia

Abstract

Machado-Joseph disease (MJD), also known as Spinocerebellar Ataxia type 3 (SCA3), is the most common autosomal dominant ataxia worldwide. MJD integrates a large group of disorders known as polyglutamine diseases (polyQ). To date, no effective treatment exists for MJD and other polyQ diseases. Nevertheless, researchers are making efforts to find treatment possibilities that modify the disease course or alleviate disease symptoms. Since neuroimaging studies in mutation carrying individuals suggest that in nervous system dysfunction begins many years before the onset of any detectable symptoms, the development of therapeutic interventions becomes of great importance, not only to slow progression of manifest disease but also to delay, or ideally prevent, its onset. Potential therapeutic targets for MJD and polyQ diseases can be divided into (i) those that are aimed at the polyQ proteins themselves, namely gene silencing, attempts to enhance mutant protein degradation or inhibition/prevention of aggregation; and (ii) those that intercept the toxic downstream effects of the polyQ proteins, such as mitochondrial dysfunction and oxidative stress, transcriptional abnormalities, UPS impairment, excitotoxicity, or activation of cell death. The existence of relevant animal models and the recent contributions towards the identification of putative molecular mechanisms underlying MJD are impacting on the development of new drugs. To date only a few preclinical trials were conducted, nevertheless some had very promising results and some candidate drugs are close to being tested in humans. Clinical trials for MJD are also very few to date and their results not very promising, mostly due to trial design constraints. Here, we provide an overview of the pharmacological therapeutic strategies for MJD studied in animal models and patients, and of their possible translation into the clinical practice.

X Demographics

X Demographics

The data shown below were collected from the profiles of 5 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 46 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 46 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 11 24%
Student > Master 6 13%
Student > Ph. D. Student 4 9%
Researcher 3 7%
Other 3 7%
Other 5 11%
Unknown 14 30%
Readers by discipline Count As %
Medicine and Dentistry 10 22%
Biochemistry, Genetics and Molecular Biology 8 17%
Neuroscience 7 15%
Agricultural and Biological Sciences 1 2%
Pharmacology, Toxicology and Pharmaceutical Science 1 2%
Other 2 4%
Unknown 17 37%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 11 July 2018.
All research outputs
#12,581,569
of 22,703,044 outputs
Outputs from Advances in experimental medicine and biology
#1,689
of 4,906 outputs
Outputs of similar age
#197,289
of 440,589 outputs
Outputs of similar age from Advances in experimental medicine and biology
#48
of 237 outputs
Altmetric has tracked 22,703,044 research outputs across all sources so far. This one is in the 44th percentile – i.e., 44% of other outputs scored the same or lower than it.
So far Altmetric has tracked 4,906 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.0. This one has gotten more attention than average, scoring higher than 65% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 440,589 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 54% of its contemporaries.
We're also able to compare this research output to 237 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 80% of its contemporaries.