↓ Skip to main content

Polyglutamine Disorders

Overview of attention for book
Cover of 'Polyglutamine Disorders'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Clinical Features of Huntington’s Disease
  3. Altmetric Badge
    Chapter 2 Genetic Rodent Models of Huntington Disease
  4. Altmetric Badge
    Chapter 3 Mitochondrial Dysfunction in Huntington’s Disease
  5. Altmetric Badge
    Chapter 4 RNA Related Pathology in Huntington’s Disease
  6. Altmetric Badge
    Chapter 5 X-Linked Spinal and Bulbar Muscular Atrophy: From Clinical Genetic Features and Molecular Pathology to Mechanisms Underlying Disease Toxicity
  7. Altmetric Badge
    Chapter 6 Spinocerebellar Ataxia Type 1: Molecular Mechanisms of Neurodegeneration and Preclinical Studies
  8. Altmetric Badge
    Chapter 7 Spinocerebellum Ataxia Type 6: Molecular Mechanisms and Calcium Channel Genetics
  9. Altmetric Badge
    Chapter 8 Spinocerebellar Ataxia Type 2
  10. Altmetric Badge
    Chapter 9 Molecular Mechanisms and Therapeutic Strategies in Spinocerebellar Ataxia Type 7
  11. Altmetric Badge
    Chapter 10 Spinocerebellar Ataxia Type 17 (SCA17)
  12. Altmetric Badge
    Chapter 11 The Neuropathology of Spinocerebellar Ataxia Type 3/Machado-Joseph Disease
  13. Altmetric Badge
    Chapter 12 Origins and Spread of Machado-Joseph Disease Ancestral Mutations Events
  14. Altmetric Badge
    Chapter 13 Clinical Features of Machado-Joseph Disease
  15. Altmetric Badge
    Chapter 14 Polyglutamine-Independent Features in Ataxin-3 Aggregation and Pathogenesis of Machado-Joseph Disease
  16. Altmetric Badge
    Chapter 15 Animal Models of Machado-Joseph Disease
  17. Altmetric Badge
    Chapter 16 Towards the Identification of Molecular Biomarkers of Spinocerebellar Ataxia Type 3 (SCA3)/Machado-Joseph Disease (MJD)
  18. Altmetric Badge
    Chapter 17 Planning Future Clinical Trials for Machado-Joseph Disease
  19. Altmetric Badge
    Chapter 18 Molecular Mechanisms and Cellular Pathways Implicated in Machado-Joseph Disease Pathogenesis
  20. Altmetric Badge
    Chapter 19 Pharmacological Therapies for Machado-Joseph Disease
  21. Altmetric Badge
    Chapter 20 Gene Therapies for Polyglutamine Diseases
  22. Altmetric Badge
    Chapter 21 Stem Cell-Based Therapies for Polyglutamine Diseases
Attention for Chapter 11: The Neuropathology of Spinocerebellar Ataxia Type 3/Machado-Joseph Disease
Altmetric Badge

About this Attention Score

  • Good Attention Score compared to outputs of the same age (67th percentile)
  • High Attention Score compared to outputs of the same age and source (83rd percentile)

Mentioned by

twitter
4 X users

Citations

dimensions_citation
10 Dimensions

Readers on

mendeley
61 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
The Neuropathology of Spinocerebellar Ataxia Type 3/Machado-Joseph Disease
Chapter number 11
Book title
Polyglutamine Disorders
Published in
Advances in experimental medicine and biology, January 2018
DOI 10.1007/978-3-319-71779-1_11
Pubmed ID
Book ISBNs
978-3-31-971778-4, 978-3-31-971779-1
Authors

Arnulf H. Koeppen

Abstract

Spinocerebellar ataxia type 3 (SCA-3)/Machado-Joseph disease (MJD), the most common autosomal dominant ataxia, affects many regions of the brain and spinal cord. Similar to SCA-1, SCA-2, SCA-6, SCA-7, and SCA-17, the mutation consists of a pathogenic translated cytosine-adenine-guanine (CAG) trinucleotide repeat expansion. Almost invariably, the substantia nigra and the dentate nucleus of the cerebellum bear the brunt of the disease, and these lesions account for the Parkinsonian and ataxic phenotypes. Lesions of motor nuclei in the brain stem cause the complex disturbance of ocular motility and weakness of the tongue. Atrophy of the basis pontis is common, and polyglutamine-positive neuronal intranuclear inclusion bodies are most readily found in the pontine gray. Abnormalities of basal ganglia, thalamus, spinal cord, dorsal root ganglia, and sensory peripheral nerves are more variable. This report of the main neuropathological lesions is based on the study of 12 genetically confirmed autopsy cases of SCA-3/MJD. In the cerebellum, all layers of the cortex remain normal, but the dentate nucleus exhibits neuronal loss and a peculiar proliferation of synaptic terminals termed grumose regeneration. The clusters surrounding residual neuronal cell bodies and dendrites are interpreted as a response to loss of γ-aminobutyric acid (GABA)-A-receptors and lack of gephyrin, a protein that accomplishes the proper positioning of GABA-A- and glycine receptors. At the spinal level, dorsal root ganglia reveal proliferation of satellite cells, active neuronal destruction, and residual nodules. The spinal cord shows total or subtotal loss of neurons in the dorsal nuclei, anterior horn cell atrophy, and variable long tract degeneration. While misfolding of ataxin-3 due to overly long polyglutamine stretches is a critical contributor to the pathogenesis of SCA-3/MJD, the great neuropathological complexity of the disorder remains largely unexplained.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 61 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 61 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 14 23%
Student > Ph. D. Student 9 15%
Student > Master 9 15%
Student > Doctoral Student 3 5%
Researcher 3 5%
Other 2 3%
Unknown 21 34%
Readers by discipline Count As %
Neuroscience 14 23%
Medicine and Dentistry 10 16%
Biochemistry, Genetics and Molecular Biology 10 16%
Nursing and Health Professions 3 5%
Agricultural and Biological Sciences 2 3%
Other 5 8%
Unknown 17 28%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 4. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 13 July 2018.
All research outputs
#7,034,523
of 23,023,224 outputs
Outputs from Advances in experimental medicine and biology
#1,118
of 4,964 outputs
Outputs of similar age
#142,235
of 442,364 outputs
Outputs of similar age from Advances in experimental medicine and biology
#39
of 237 outputs
Altmetric has tracked 23,023,224 research outputs across all sources so far. This one has received more attention than most of these and is in the 68th percentile.
So far Altmetric has tracked 4,964 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.1. This one has done well, scoring higher than 76% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 442,364 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 67% of its contemporaries.
We're also able to compare this research output to 237 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 83% of its contemporaries.