↓ Skip to main content

DNA Topoisomerases

Overview of attention for book
Cover of 'DNA Topoisomerases'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Type IA DNA Topoisomerases: A Universal Core and Multiple Activities
  3. Altmetric Badge
    Chapter 2 Topoisomerase I and Genome Stability: The Good and the Bad
  4. Altmetric Badge
    Chapter 3 DNA Topoisomerases as Targets for Antibacterial Agents
  5. Altmetric Badge
    Chapter 4 DNA Supercoiling Measurement in Bacteria
  6. Altmetric Badge
    Chapter 5 DNA Catenation Reveals the Dynamics of DNA Topology During Replication
  7. Altmetric Badge
    Chapter 6 Mapping E. coli Topoisomerase IV Binding and Activity Sites
  8. Altmetric Badge
    Chapter 7 The Use of Psoralen Photobinding to Study Transcription-Induced Supercoiling
  9. Altmetric Badge
    Chapter 8 Immunoprecipitation of RNA:DNA Hybrids from Budding Yeast
  10. Altmetric Badge
    Chapter 9 Detection of oriC-Independent Replication in Escherichia coli Cells
  11. Altmetric Badge
    Chapter 10 Single-Molecule Magnetic Tweezer Analysis of Topoisomerases
  12. Altmetric Badge
    Chapter 11 Synthesis of Hemicatenanes for the Study of Type IA Topoisomerases
  13. Altmetric Badge
    Chapter 12 An Assay for Detecting RNA Topoisomerase Activity
  14. Altmetric Badge
    Chapter 13 Studying TDP1 Function in DNA Repair
  15. Altmetric Badge
    Chapter 14 Topoisomerase II Chromatin Immunoprecipitation
  16. Altmetric Badge
    Chapter 15 Analyzing Mitotic Chromosome Structural Defects After Topoisomerase II Inhibition or Mutation
  17. Altmetric Badge
    Chapter 16 Monitoring the DNA Topoisomerase II Checkpoint in Saccharomyces cerevisiae
  18. Altmetric Badge
    Chapter 17 Studying Topoisomerase 1-Mediated Damage at Genomic Ribonucleotides
  19. Altmetric Badge
    Chapter 18 A Fluorescence-Based Assay for Identification of Bacterial Topoisomerase I Poisons
  20. Altmetric Badge
    Chapter 19 Fluoroquinolone-Gyrase-DNA Cleaved Complexes
  21. Altmetric Badge
    Chapter 20 Detection of Topoisomerase Covalent Complexes in Eukaryotic Cells
  22. Altmetric Badge
    Chapter 21 Visualization and Quantification of Topoisomerase–DNA Covalent Complexes Using the Trapped in Agarose Immunostaining (TARDIS) Assay
  23. Altmetric Badge
    Chapter 22 Study of Plasmid-Mediated Quinolone Resistance in Bacteria
Attention for Chapter 21: Visualization and Quantification of Topoisomerase–DNA Covalent Complexes Using the Trapped in Agarose Immunostaining (TARDIS) Assay
Altmetric Badge

Citations

dimensions_citation
5 Dimensions

Readers on

mendeley
9 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Visualization and Quantification of Topoisomerase–DNA Covalent Complexes Using the Trapped in Agarose Immunostaining (TARDIS) Assay
Chapter number 21
Book title
DNA Topoisomerases
Published in
Methods in molecular biology, January 2018
DOI 10.1007/978-1-4939-7459-7_21
Pubmed ID
Book ISBNs
978-1-4939-7458-0, 978-1-4939-7459-7
Authors

Ian G. Cowell, Caroline A. Austin

Abstract

The TARDIS assay was originally developed as a means of detecting and quantifying melphalan and cisplatin DNA adducts at the single cell level, but it has since been adapted to quantify topoisomerase DNA complexes that result from the actions of topoisomerase poisons and this is currently the main use of the assay. The method employs sensitive immunofluorescent detection to quantify topoisomerase molecules covalently coupled to DNA in what are often referred to as cleavage complexes. Free topoisomerase molecules, and other cellular constituents are first removed using salt-detergent extraction of agarose-embedded, unfixed cells. Using these stringent extraction conditions, genomic DNA remains in place in the agarose as "nuclear ghosts," and any covalent attached molecules can be detected and quantified by immunofluorescence with a low background.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 9 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 9 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 4 44%
Professor > Associate Professor 1 11%
Student > Doctoral Student 1 11%
Researcher 1 11%
Student > Master 1 11%
Other 0 0%
Unknown 1 11%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 5 56%
Pharmacology, Toxicology and Pharmaceutical Science 1 11%
Medicine and Dentistry 1 11%
Unknown 2 22%