↓ Skip to main content

Biological Small Angle Scattering: Techniques, Strategies and Tips

Overview of attention for book
Cover of 'Biological Small Angle Scattering: Techniques, Strategies and Tips'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Small Angle Scattering: Historical Perspective and Future Outlook
  3. Altmetric Badge
    Chapter 2 Sample and Buffer Preparation for SAXS
  4. Altmetric Badge
    Chapter 3 Considerations for Sample Preparation Using Size-Exclusion Chromatography for Home and Synchrotron Sources
  5. Altmetric Badge
    Chapter 4 How to Analyze and Present SAS Data for Publication
  6. Altmetric Badge
    Chapter 5 Designing and Performing Biological Solution Small-Angle Neutron Scattering Contrast Variation Experiments on Multi-component Assemblies
  7. Altmetric Badge
    Chapter 6 SAS-Based Structural Modelling and Model Validation
  8. Altmetric Badge
    Chapter 7 Structural Characterization of Highly Flexible Proteins by Small-Angle Scattering
  9. Altmetric Badge
    Chapter 8 What Can We Learn from Wide-Angle Solution Scattering?
  10. Altmetric Badge
    Chapter 9 SAS-Based Studies of Protein Fibrillation
  11. Altmetric Badge
    Chapter 10 High Resolution Distance Distributions Determined by X-Ray and Neutron Scattering
  12. Altmetric Badge
    Chapter 11 A Successful Combination: Coupling SE-HPLC with SAXS
  13. Altmetric Badge
    Chapter 12 Applications of SANS to Study Membrane Protein Systems
  14. Altmetric Badge
    Chapter 13 Hybrid Applications of Solution Scattering to Aid Structural Biology
  15. Altmetric Badge
    Chapter 14 A Practical Guide to iSPOT Modeling: An Integrative Structural Biology Platform
  16. Altmetric Badge
    Chapter 15 Small Angle Scattering for Pharmaceutical Applications: From Drugs to Drug Delivery Systems
Attention for Chapter 3: Considerations for Sample Preparation Using Size-Exclusion Chromatography for Home and Synchrotron Sources
Altmetric Badge

Citations

dimensions_citation
27 Dimensions

Readers on

mendeley
20 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Considerations for Sample Preparation Using Size-Exclusion Chromatography for Home and Synchrotron Sources
Chapter number 3
Book title
Biological Small Angle Scattering: Techniques, Strategies and Tips
Published in
Advances in experimental medicine and biology, January 2017
DOI 10.1007/978-981-10-6038-0_3
Pubmed ID
Book ISBNs
978-9-81-106037-3, 978-9-81-106038-0
Authors

Robert P. Rambo

Abstract

The success of a SAXS experiment for structural investigations depends on two precise measurements, the sample and the buffer background. Buffer matching between the sample and background can be achieved using dialysis methods but in biological SAXS of monodisperse systems, sample preparation is routinely being performed with size exclusion chromatography (SEC). SEC is the most reliable method for SAXS sample preparation as the method not only purifies the sample for SAXS but also almost guarantees ideal buffer matching. Here, I will highlight the use of SEC for SAXS sample preparation and demonstrate using example proteins that SEC purification does not always provide for ideal samples. Scrutiny of the SEC elution peak using quasi-elastic and multi-angle light scattering techniques can reveal hidden features (heterogeneity) of the sample that should be considered during SAXS data analysis. In some cases, sample heterogeneity can be controlled using a small molecule additive and I outline a simple additive screening method for sample preparation.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 20 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 20 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 7 35%
Student > Bachelor 3 15%
Researcher 3 15%
Student > Master 2 10%
Professor 1 5%
Other 1 5%
Unknown 3 15%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 8 40%
Chemistry 4 20%
Agricultural and Biological Sciences 3 15%
Unknown 5 25%