↓ Skip to main content

Biological Small Angle Scattering: Techniques, Strategies and Tips

Overview of attention for book
Cover of 'Biological Small Angle Scattering: Techniques, Strategies and Tips'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Small Angle Scattering: Historical Perspective and Future Outlook
  3. Altmetric Badge
    Chapter 2 Sample and Buffer Preparation for SAXS
  4. Altmetric Badge
    Chapter 3 Considerations for Sample Preparation Using Size-Exclusion Chromatography for Home and Synchrotron Sources
  5. Altmetric Badge
    Chapter 4 How to Analyze and Present SAS Data for Publication
  6. Altmetric Badge
    Chapter 5 Designing and Performing Biological Solution Small-Angle Neutron Scattering Contrast Variation Experiments on Multi-component Assemblies
  7. Altmetric Badge
    Chapter 6 SAS-Based Structural Modelling and Model Validation
  8. Altmetric Badge
    Chapter 7 Structural Characterization of Highly Flexible Proteins by Small-Angle Scattering
  9. Altmetric Badge
    Chapter 8 What Can We Learn from Wide-Angle Solution Scattering?
  10. Altmetric Badge
    Chapter 9 SAS-Based Studies of Protein Fibrillation
  11. Altmetric Badge
    Chapter 10 High Resolution Distance Distributions Determined by X-Ray and Neutron Scattering
  12. Altmetric Badge
    Chapter 11 A Successful Combination: Coupling SE-HPLC with SAXS
  13. Altmetric Badge
    Chapter 12 Applications of SANS to Study Membrane Protein Systems
  14. Altmetric Badge
    Chapter 13 Hybrid Applications of Solution Scattering to Aid Structural Biology
  15. Altmetric Badge
    Chapter 14 A Practical Guide to iSPOT Modeling: An Integrative Structural Biology Platform
  16. Altmetric Badge
    Chapter 15 Small Angle Scattering for Pharmaceutical Applications: From Drugs to Drug Delivery Systems
Attention for Chapter 4: How to Analyze and Present SAS Data for Publication
Altmetric Badge

Citations

dimensions_citation
27 Dimensions

Readers on

mendeley
14 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
How to Analyze and Present SAS Data for Publication
Chapter number 4
Book title
Biological Small Angle Scattering: Techniques, Strategies and Tips
Published in
Advances in experimental medicine and biology, January 2017
DOI 10.1007/978-981-10-6038-0_4
Pubmed ID
Book ISBNs
978-9-81-106037-3, 978-9-81-106038-0
Authors

Martha Brennich, Petra Pernot, Adam Round

Abstract

SAS is a powerful technique to investigate oligomeric state and domain organization of macromolecules, e.g. proteins and nucleic acids, under physiological, functional and even time resolved conditions. However, reconstructing three dimensional structures from SAS data is inherently ambiguous, as no information about orientation and phase is available. In addition experimental artifacts such as radiation damage, concentration effects and incorrect background subtraction can hinder the interpretation of even lead to wrong results. In this chapter, explanations on how to analyze data and how to assess and minimize the influence of experimental artifacts on the data. Furthermore, guidelines on how to present the resulting data and models to demonstrate the data supports the conclusion being made and that it is not biased by artifacts, will be given.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 14 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 14 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 5 36%
Student > Ph. D. Student 3 21%
Student > Bachelor 2 14%
Other 1 7%
Student > Doctoral Student 1 7%
Other 1 7%
Unknown 1 7%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 5 36%
Chemistry 4 29%
Agricultural and Biological Sciences 1 7%
Medicine and Dentistry 1 7%
Engineering 1 7%
Other 0 0%
Unknown 2 14%