↓ Skip to main content

Biological Small Angle Scattering: Techniques, Strategies and Tips

Overview of attention for book
Cover of 'Biological Small Angle Scattering: Techniques, Strategies and Tips'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Small Angle Scattering: Historical Perspective and Future Outlook
  3. Altmetric Badge
    Chapter 2 Sample and Buffer Preparation for SAXS
  4. Altmetric Badge
    Chapter 3 Considerations for Sample Preparation Using Size-Exclusion Chromatography for Home and Synchrotron Sources
  5. Altmetric Badge
    Chapter 4 How to Analyze and Present SAS Data for Publication
  6. Altmetric Badge
    Chapter 5 Designing and Performing Biological Solution Small-Angle Neutron Scattering Contrast Variation Experiments on Multi-component Assemblies
  7. Altmetric Badge
    Chapter 6 SAS-Based Structural Modelling and Model Validation
  8. Altmetric Badge
    Chapter 7 Structural Characterization of Highly Flexible Proteins by Small-Angle Scattering
  9. Altmetric Badge
    Chapter 8 What Can We Learn from Wide-Angle Solution Scattering?
  10. Altmetric Badge
    Chapter 9 SAS-Based Studies of Protein Fibrillation
  11. Altmetric Badge
    Chapter 10 High Resolution Distance Distributions Determined by X-Ray and Neutron Scattering
  12. Altmetric Badge
    Chapter 11 A Successful Combination: Coupling SE-HPLC with SAXS
  13. Altmetric Badge
    Chapter 12 Applications of SANS to Study Membrane Protein Systems
  14. Altmetric Badge
    Chapter 13 Hybrid Applications of Solution Scattering to Aid Structural Biology
  15. Altmetric Badge
    Chapter 14 A Practical Guide to iSPOT Modeling: An Integrative Structural Biology Platform
  16. Altmetric Badge
    Chapter 15 Small Angle Scattering for Pharmaceutical Applications: From Drugs to Drug Delivery Systems
Attention for Chapter 1: Small Angle Scattering: Historical Perspective and Future Outlook
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (81st percentile)
  • High Attention Score compared to outputs of the same age and source (88th percentile)

Mentioned by

twitter
14 X users

Readers on

mendeley
17 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Small Angle Scattering: Historical Perspective and Future Outlook
Chapter number 1
Book title
Biological Small Angle Scattering: Techniques, Strategies and Tips
Published in
Advances in experimental medicine and biology, January 2017
DOI 10.1007/978-981-10-6038-0_1
Pubmed ID
Book ISBNs
978-9-81-106037-3, 978-9-81-106038-0
Authors

Thomas M. Weiss, Weiss, Thomas M.

Abstract

Small angle scattering (SAS) is a powerful and versatile tool to elucidate the structure of matter at the nanometer scale. Recently, the technique has seen a tremendous growth of applications in the field of structural molecular biology. Its origins however date back to almost a century ago and even though the methods potential for studying biological macromolecules was realized already early on, it was only during the last two decades that SAS gradually became a major experimental technique for the structural biologist. This rise in popularity and application was driven by the concurrence of different key factors such as the increased accessibility to high quality SAS instruments enabled by the growing number of synchrotron facilities and neutron sources established around the world, the emerging need of the structural biology community to study large multi-domain complexes and flexible systems that are hard to crystalize, and in particular the development and availability of data analysis software together with the overall access to computational resources powerful enough to run them. Today, SAS is an established and widely used tool for structural studies on bio-macromolecules. Given the potential offered by the next generation X-ray and neutron sources as well as the development of new, innovative approaches to collect and analyze solution scattering data, the application of SAS in the field of structural molecular biology will certainly continue to thrive in the years to come.

X Demographics

X Demographics

The data shown below were collected from the profiles of 14 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 17 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 17 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 4 24%
Student > Master 4 24%
Student > Ph. D. Student 3 18%
Researcher 1 6%
Student > Postgraduate 1 6%
Other 0 0%
Unknown 4 24%
Readers by discipline Count As %
Chemistry 5 29%
Agricultural and Biological Sciences 3 18%
Business, Management and Accounting 1 6%
Philosophy 1 6%
Biochemistry, Genetics and Molecular Biology 1 6%
Other 1 6%
Unknown 5 29%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 8. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 15 December 2017.
All research outputs
#3,976,515
of 23,011,300 outputs
Outputs from Advances in experimental medicine and biology
#651
of 4,960 outputs
Outputs of similar age
#79,157
of 421,287 outputs
Outputs of similar age from Advances in experimental medicine and biology
#56
of 490 outputs
Altmetric has tracked 23,011,300 research outputs across all sources so far. Compared to these this one has done well and is in the 82nd percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 4,960 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.1. This one has done well, scoring higher than 86% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 421,287 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 81% of its contemporaries.
We're also able to compare this research output to 490 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 88% of its contemporaries.