↓ Skip to main content

Non-canonical Cyclic Nucleotides

Overview of attention for book
Cover of 'Non-canonical Cyclic Nucleotides'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 34 Mammalian Nucleotidyl Cyclases and Their Nucleotide Binding Sites
  3. Altmetric Badge
    Chapter 35 Cyclic Nucleotide Monophosphates in Plants and Plant Signaling.
  4. Altmetric Badge
    Chapter 36 cAMP-Dependent Protein Kinase and cGMP-Dependent Protein Kinase as Cyclic Nucleotide Effectors
  5. Altmetric Badge
    Chapter 37 Interaction of Epac with Non-canonical Cyclic Nucleotides
  6. Altmetric Badge
    Chapter 38 Identification of cCMP and cUMP Substrate Proteins and Cross Talk Between cNMPs.
  7. Altmetric Badge
    Chapter 39 3',5'-cIMP as Potential Second Messenger in the Vascular Wall.
  8. Altmetric Badge
    Chapter 40 Discovery and Roles of 2′,3′-cAMP in Biological Systems
  9. Altmetric Badge
    Chapter 41 Medicinal Chemistry of the Noncanonical Cyclic Nucleotides cCMP and cUMP
  10. Altmetric Badge
    Chapter 42 Holistic Methods for the Analysis of cNMP Effects
  11. Altmetric Badge
    Chapter 43 The Chemistry of the Noncanonical Cyclic Dinucleotide 2′3′-cGAMP and Its Analogs
  12. Altmetric Badge
    Chapter 5000 8-Nitro-cGMP: A Novel Protein-Reactive cNMP and Its Emerging Roles in Autophagy
  13. Altmetric Badge
    Chapter 5001 Mass Spectrometric Analysis of Non-canonical Cyclic Nucleotides
  14. Altmetric Badge
    Chapter 5002 Cyclic Dinucleotides in the Scope of the Mammalian Immune System
  15. Altmetric Badge
    Chapter 5003 The Pseudomonas aeruginosa Exoenzyme Y: A Promiscuous Nucleotidyl Cyclase Edema Factor and Virulence Determinant
  16. Altmetric Badge
    Chapter 5004 Inactivation of Non-canonical Cyclic Nucleotides: Hydrolysis and Transport
  17. Altmetric Badge
    Chapter 5005 cCMP and cUMP Across the Tree of Life: From cCMP and cUMP Generators to cCMP- and cUMP-Regulated Cell Functions
  18. Altmetric Badge
    Chapter 5006 Regulation of HCN Ion Channels by Non-canonical Cyclic Nucleotides
  19. Altmetric Badge
    Chapter 5007 cCMP and cUMP in Apoptosis: Concepts and Methods
Attention for Chapter 5006: Regulation of HCN Ion Channels by Non-canonical Cyclic Nucleotides
Altmetric Badge

Citations

dimensions_citation
2 Dimensions

Readers on

mendeley
12 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Regulation of HCN Ion Channels by Non-canonical Cyclic Nucleotides
Chapter number 5006
Book title
Non-canonical Cyclic Nucleotides
Published in
Handbook of experimental pharmacology, January 2016
DOI 10.1007/164_2016_5006
Pubmed ID
Book ISBNs
978-3-31-952671-3, 978-3-31-952673-7
Authors

Bryan VanSchouwen, Giuseppe Melacini

Abstract

The hyperpolarization-activated cyclic-nucleotide-modulated (HCN) proteins are cAMP-regulated ion channels that play a key role in nerve impulse transmission and heart rate modulation in neuronal and cardiac cells, respectively. Although they are regulated primarily by cAMP, other cyclic nucleotides such as cGMP, cCMP, and cUMP serve as partial agonists for the HCN2 and HCN4 isoforms. By competing with cAMP for binding, these non-canonical ligands alter ion channel gating, and in turn, modulate the cAMP-dependent activation profiles. The partial activation of non-canonical cyclic nucleotides can be rationalized by either a partial reversal of a two-state inactive/active conformational equilibrium, or by sampling of a third conformational state with partial activity. Furthermore, different mechanisms and degrees of activation have been observed upon binding of non-canonical cyclic nucleotides to HCN2 versus HCN4, suggesting that these ligands control HCN ion channels in an isoform-specific manner. While more work remains to be done to achieve a complete understanding of ion channel modulation by non-canonical cyclic nucleotides, it is already clear that such knowledge will ultimately prove invaluable in achieving a more complete understanding of ion channel signaling in vivo, as well as in the development of therapeutics designed to selectively modulate ion channel gating.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 12 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 12 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 3 25%
Student > Bachelor 3 25%
Researcher 2 17%
Professor 1 8%
Other 1 8%
Other 0 0%
Unknown 2 17%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 2 17%
Chemistry 2 17%
Environmental Science 1 8%
Agricultural and Biological Sciences 1 8%
Pharmacology, Toxicology and Pharmaceutical Science 1 8%
Other 2 17%
Unknown 3 25%