↓ Skip to main content

Protein NMR

Overview of attention for book
Cover of 'Protein NMR'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 NMR of Macromolecular Assemblies and Machines at 1 GHz and Beyond: New Transformative Opportunities for Molecular Structural Biology
  3. Altmetric Badge
    Chapter 2 Experimental Aspects of Polarization Optimized Experiments (POE) for Magic Angle Spinning Solid-State NMR of Microcrystalline and Membrane-Bound Proteins
  4. Altmetric Badge
    Chapter 3 Afterglow Solid-State NMR Spectroscopy
  5. Altmetric Badge
    Chapter 4 Filamentous Bacteriophage Viruses: Preparation, Magic-Angle Spinning Solid-State NMR Experiments, and Structure Determination. - PubMed - NCBI
  6. Altmetric Badge
    Chapter 5 Spherical Nanoparticle Supported Lipid Bilayers: A Tool for Modeling Protein Interactions with Curved Membranes
  7. Altmetric Badge
    Chapter 6 Rapid Prediction of Multi-dimensional NMR Data Sets Using FANDAS. - PubMed - NCBI
  8. Altmetric Badge
    Chapter 7 Strategies for Efficient Sample Preparation for Dynamic Nuclear Polarization Solid-State NMR of Biological Macromolecules. - PubMed - NCBI
  9. Altmetric Badge
    Chapter 8 In-Vitro Dissolution Dynamic Nuclear Polarization for Sensitivity Enhancement of NMR with Biological Molecules
  10. Altmetric Badge
    Chapter 9 Determination of Protein ps-ns Motions by High-Resolution Relaxometry
  11. Altmetric Badge
    Chapter 10 Characterizing Protein Dynamics with NMR R 1ρ Relaxation Experiments
  12. Altmetric Badge
    Chapter 11 CPMG Experiments for Protein Minor Conformer Structure Determination
  13. Altmetric Badge
    Chapter 12 Probing the Atomic Structure of Transient Protein Contacts by Paramagnetic Relaxation Enhancement Solution NMR
  14. Altmetric Badge
    Chapter 13 From Raw Data to Protein Backbone Chemical Shifts Using NMRFx Processing and NMRViewJ Analysis
  15. Altmetric Badge
    Chapter 14 Protein Structure Elucidation from NMR Data with the Program Xplor-NIH
  16. Altmetric Badge
    Chapter 15 Practical Nonuniform Sampling and Non-Fourier Spectral Reconstruction for Multidimensional NMR
  17. Altmetric Badge
    Chapter 16 Covariance NMR Processing and Analysis for Protein Assignment
  18. Altmetric Badge
    Chapter 17 Structures of Dynamic Protein Complexes: Hybrid Techniques to Study MAP Kinase Complexes and the ESCRT System
  19. Altmetric Badge
    Chapter 18 Implementation of the NMR CHEmical Shift Covariance Analysis (CHESCA): A Chemical Biologist’s Approach to Allostery
  20. Altmetric Badge
    Chapter 19 High-Efficiency Expression of Yeast-Derived G-Protein Coupled Receptors and 19F Labeling for Dynamical Studies
  21. Altmetric Badge
    Chapter 20 Quantitative Determination of Interacting Protein Surfaces in Prokaryotes and Eukaryotes by Using In-Cell NMR Spectroscopy
Attention for Chapter 9: Determination of Protein ps-ns Motions by High-Resolution Relaxometry
Altmetric Badge

Citations

dimensions_citation
3 Dimensions

Readers on

mendeley
22 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Determination of Protein ps-ns Motions by High-Resolution Relaxometry
Chapter number 9
Book title
Protein NMR
Published in
Methods in molecular biology, January 2018
DOI 10.1007/978-1-4939-7386-6_9
Pubmed ID
Book ISBNs
978-1-4939-7385-9, 978-1-4939-7386-6
Authors

Samuel F. Cousin, Pavel Kadeřávek, Nicolas Bolik-Coulon, Fabien Ferrage

Abstract

Many of the functions of biomacromolecules can be rationalized by the characterization of their conformational energy landscapes: the structures of the dominant states, transitions between states and motions within states. Nuclear magnetic resonance (NMR) spectroscopy is the technique of choice to study internal motions in proteins. The determination of motions on picosecond to nanosecond timescales requires the measurement of nuclear spin relaxation rates at multiple magnetic fields. High sensitivity and resolution are obtained only at high magnetic fields, so that, until recently, site-specific relaxation rates in biomolecules were only measured over a narrow range of high magnetic fields. This limitation was particularly striking for the quantification of motions on nanosecond timescales, close to the correlation time for overall rotational diffusion. High-resolution relaxometry is an emerging technique to investigate picosecond-nanosecond motions of proteins. This approach uses a high-field NMR spectrometer equipped with a sample shuttle device, which allows for the measurement of the relaxation rate constants at low magnetic fields, while preserving the sensitivity and resolution of a high-field NMR spectrometer. The combined analysis of high-resolution relaxometry and standard high-field relaxation data provides a more accurate description of the dynamics of proteins, in particular in the nanosecond range. The purpose of this chapter is to describe how to perform high-resolution relaxometry experiments and how to analyze the rates measured with this technique.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 22 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 22 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 6 27%
Student > Ph. D. Student 5 23%
Professor 2 9%
Student > Postgraduate 2 9%
Student > Bachelor 1 5%
Other 4 18%
Unknown 2 9%
Readers by discipline Count As %
Chemistry 7 32%
Biochemistry, Genetics and Molecular Biology 6 27%
Arts and Humanities 1 5%
Chemical Engineering 1 5%
Pharmacology, Toxicology and Pharmaceutical Science 1 5%
Other 2 9%
Unknown 4 18%