↓ Skip to main content

Statistical Human Genetics

Overview of attention for book
Cover of 'Statistical Human Genetics'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Statistical Genetic Terminology
  3. Altmetric Badge
    Chapter 2 Identification of Genotype Errors
  4. Altmetric Badge
    Chapter 3 Detecting Pedigree Relationship Errors
  5. Altmetric Badge
    Chapter 4 Identifying Cryptic Relationships
  6. Altmetric Badge
    Chapter 5 Estimating Allele Frequencies
  7. Altmetric Badge
    Chapter 6 Testing Departure from Hardy-Weinberg Proportions
  8. Altmetric Badge
    Chapter 7 Estimating Disequilibrium Coefficients
  9. Altmetric Badge
    Chapter 8 Detecting Familial Aggregation
  10. Altmetric Badge
    Chapter 9 Estimating Heritability from Twin Studies
  11. Altmetric Badge
    Chapter 10 Estimating Heritability from Nuclear Family and Pedigree Data
  12. Altmetric Badge
    Chapter 11 Correcting for Ascertainment
  13. Altmetric Badge
    Chapter 12 Segregation Analysis Using the Unified Model
  14. Altmetric Badge
    Chapter 13 Design Considerations for Genetic Linkage and Association Studies
  15. Altmetric Badge
    Chapter 14 Model-Based Linkage Analysis of a Quantitative Trait
  16. Altmetric Badge
    Chapter 15 Model-Based Linkage Analysis of a Binary Trait
  17. Altmetric Badge
    Chapter 16 Model-Free Linkage Analysis of a Quantitative Trait
  18. Altmetric Badge
    Chapter 17 Model-Free Linkage Analysis of a Binary Trait
  19. Altmetric Badge
    Chapter 18 Single Marker Association Analysis for Unrelated Samples
  20. Altmetric Badge
    Chapter 19 Single Marker Family-Based Association Analysis Conditional on Parental Information
  21. Altmetric Badge
    Chapter 20 Single Marker Family-Based Association Analysis Not Conditional on Parental Information
  22. Altmetric Badge
    Chapter 21 Calibrating Population Stratification in Association Analysis
  23. Altmetric Badge
    Chapter 22 Cross-Phenotype Association Analysis Using Summary Statistics from GWAS
  24. Altmetric Badge
    Chapter 23 Haplotype Inference
  25. Altmetric Badge
    Chapter 24 Multi-SNP Haplotype Analysis Methods for Association Analysis
  26. Altmetric Badge
    Chapter 25 The Analysis of Ethnic Mixtures
  27. Altmetric Badge
    Chapter 26 Detecting Multiethnic Rare Variants
  28. Altmetric Badge
    Chapter 27 Identifying Gene Interaction Networks
  29. Altmetric Badge
    Chapter 28 Structural Equation Modeling
  30. Altmetric Badge
    Chapter 29 Mendelian Randomization
  31. Altmetric Badge
    Chapter 30 Preprocessing and Quality Control for Whole-Genome Sequences from the Illumina HiSeq X Platform
  32. Altmetric Badge
    Chapter 31 Processing and Analyzing Human Microbiome Data
Attention for Chapter 28: Structural Equation Modeling
Altmetric Badge

Citations

dimensions_citation
7 Dimensions

Readers on

mendeley
478 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Structural Equation Modeling
Chapter number 28
Book title
Statistical Human Genetics
Published in
Methods in molecular biology, January 2017
DOI 10.1007/978-1-4939-7274-6_28
Pubmed ID
Book ISBNs
978-1-4939-7273-9, 978-1-4939-7274-6
Authors

Catherine M. Stein, Nathan J. Morris, Noémi B. Hall, Nora L. Nock

Abstract

Structural equation modeling (SEM) is a multivariate statistical framework that is used to model complex relationships between directly observed and indirectly observed (latent) variables. SEM is a general framework that involves simultaneously solving systems of linear equations and encompasses other techniques such as regression, factor analysis, path analysis, and latent growth curve modeling. Recently, SEM has gained popularity in the analysis of complex genetic traits because it can be used to better analyze the relationships between correlated variables (traits), to model genes as latent variables as a function of multiple observed genetic variants, and to assess the association between multiple genetic variants and multiple correlated phenotypes of interest. Though the general SEM framework only allows for the analysis of independent observations, recent work has extended SEM for the analysis of data on general pedigrees. Here, we review the theory of SEM for both unrelated and family data, describe the available software for SEM, and provide examples of SEM analysis.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 478 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 1 <1%
China 1 <1%
Unknown 476 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 101 21%
Student > Master 55 12%
Student > Doctoral Student 37 8%
Researcher 27 6%
Student > Bachelor 25 5%
Other 70 15%
Unknown 163 34%
Readers by discipline Count As %
Business, Management and Accounting 93 19%
Social Sciences 40 8%
Psychology 35 7%
Computer Science 21 4%
Engineering 21 4%
Other 94 20%
Unknown 174 36%