↓ Skip to main content

Statistical Human Genetics

Overview of attention for book
Cover of 'Statistical Human Genetics'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Statistical Genetic Terminology
  3. Altmetric Badge
    Chapter 2 Identification of Genotype Errors
  4. Altmetric Badge
    Chapter 3 Detecting Pedigree Relationship Errors
  5. Altmetric Badge
    Chapter 4 Identifying Cryptic Relationships
  6. Altmetric Badge
    Chapter 5 Estimating Allele Frequencies
  7. Altmetric Badge
    Chapter 6 Testing Departure from Hardy-Weinberg Proportions
  8. Altmetric Badge
    Chapter 7 Estimating Disequilibrium Coefficients
  9. Altmetric Badge
    Chapter 8 Detecting Familial Aggregation
  10. Altmetric Badge
    Chapter 9 Estimating Heritability from Twin Studies
  11. Altmetric Badge
    Chapter 10 Estimating Heritability from Nuclear Family and Pedigree Data
  12. Altmetric Badge
    Chapter 11 Correcting for Ascertainment
  13. Altmetric Badge
    Chapter 12 Segregation Analysis Using the Unified Model
  14. Altmetric Badge
    Chapter 13 Design Considerations for Genetic Linkage and Association Studies
  15. Altmetric Badge
    Chapter 14 Model-Based Linkage Analysis of a Quantitative Trait
  16. Altmetric Badge
    Chapter 15 Model-Based Linkage Analysis of a Binary Trait
  17. Altmetric Badge
    Chapter 16 Model-Free Linkage Analysis of a Quantitative Trait
  18. Altmetric Badge
    Chapter 17 Model-Free Linkage Analysis of a Binary Trait
  19. Altmetric Badge
    Chapter 18 Single Marker Association Analysis for Unrelated Samples
  20. Altmetric Badge
    Chapter 19 Single Marker Family-Based Association Analysis Conditional on Parental Information
  21. Altmetric Badge
    Chapter 20 Single Marker Family-Based Association Analysis Not Conditional on Parental Information
  22. Altmetric Badge
    Chapter 21 Calibrating Population Stratification in Association Analysis
  23. Altmetric Badge
    Chapter 22 Cross-Phenotype Association Analysis Using Summary Statistics from GWAS
  24. Altmetric Badge
    Chapter 23 Haplotype Inference
  25. Altmetric Badge
    Chapter 24 Multi-SNP Haplotype Analysis Methods for Association Analysis
  26. Altmetric Badge
    Chapter 25 The Analysis of Ethnic Mixtures
  27. Altmetric Badge
    Chapter 26 Detecting Multiethnic Rare Variants
  28. Altmetric Badge
    Chapter 27 Identifying Gene Interaction Networks
  29. Altmetric Badge
    Chapter 28 Structural Equation Modeling
  30. Altmetric Badge
    Chapter 29 Mendelian Randomization
  31. Altmetric Badge
    Chapter 30 Preprocessing and Quality Control for Whole-Genome Sequences from the Illumina HiSeq X Platform
  32. Altmetric Badge
    Chapter 31 Processing and Analyzing Human Microbiome Data
Attention for Chapter 20: Single Marker Family-Based Association Analysis Not Conditional on Parental Information
Altmetric Badge

Citations

dimensions_citation
7 Dimensions

Readers on

mendeley
4 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Single Marker Family-Based Association Analysis Not Conditional on Parental Information
Chapter number 20
Book title
Statistical Human Genetics
Published in
Methods in molecular biology, January 2017
DOI 10.1007/978-1-4939-7274-6_20
Pubmed ID
Book ISBNs
978-1-4939-7273-9, 978-1-4939-7274-6
Authors

Junghyun Namkung, Sungho Won

Abstract

Family-based association analysis unconditional on parental genotypes models the effects of observed genotypes. This approach has been shown to have greater power than conditional methods. In this chapter, we review popular association analysis methods accounting for familial correlations: the marginal model using generalized estimating equations (GEE), the mixed model with a polygenic random component, and genome-wide association analyses. The marginal approach does not explicitly model familial correlations but uses the information to improve the efficiency of parameter estimates. This model, using GEE, is useful when the correlation structure is not of interest; the correlations are treated as nuisance parameters. In the mixed model, familial correlations are modeled as random effects, e.g., the polygenic inheritance model accounts for correlations originating from shared genomic components within a family. These unconditional methods provide a flexible modeling framework for general pedigree data to accommodate traits with various distributions and many types of covariate effects. Genome-wide association studies usually test more than 10,000 SNPs and thus traditional statistical methods accounting for the familial correlations often suffer from a computational burden. Multiple approaches that have been recently proposed to avoid this computational issue are reviewed. The single-marker analysis procedures are demonstrated using the R package gee and the ASSOC program in the S.A.G.E. package, including how to prepare input data, conduct the analysis, and interpret the output. ASSOC allows models to include random components of additional familial correlations that may be not sufficiently explained by a polygenic effect and addresses nonnormality of response variables by transformation methods. With its ease of use, ASSOC provides a useful tool for association analysis of large pedigree data.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 4 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 4 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 2 50%
Researcher 2 50%
Readers by discipline Count As %
Medicine and Dentistry 2 50%
Agricultural and Biological Sciences 1 25%
Biochemistry, Genetics and Molecular Biology 1 25%