↓ Skip to main content

Obesity and Lipotoxicity

Overview of attention for book
Cover of 'Obesity and Lipotoxicity'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 The Definition and Prevalence of Obesity and Metabolic Syndrome
  3. Altmetric Badge
    Chapter 2 Circadian Rhythms in Diet-Induced Obesity
  4. Altmetric Badge
    Chapter 3 Eat and Death: Chronic Over-Eating
  5. Altmetric Badge
    Chapter 4 Obesity, Persistent Organic Pollutants and Related Health Problems
  6. Altmetric Badge
    Chapter 5 Human Protein Kinases and Obesity
  7. Altmetric Badge
    Chapter 6 Fat Cell and Fatty Acid Turnover in Obesity
  8. Altmetric Badge
    Chapter 7 Adipose Tissue Function and Expandability as Determinants of Lipotoxicity and the Metabolic Syndrome
  9. Altmetric Badge
    Chapter 8 What Is Lipotoxicity?
  10. Altmetric Badge
    Chapter 9 The Pathogenesis of Obesity-Associated Adipose Tissue Inflammation
  11. Altmetric Badge
    Chapter 10 Microbiota and Lipotoxicity
  12. Altmetric Badge
    Chapter 11 Endoplasmic Reticulum Stress and Obesity
  13. Altmetric Badge
    Chapter 12 Insulin Resistance, Obesity and Lipotoxicity
  14. Altmetric Badge
    Chapter 13 Adipose Tissue Hypoxia in Obesity and Its Impact on Preadipocytes and Macrophages: Hypoxia Hypothesis
  15. Altmetric Badge
    Chapter 14 Adipocyte-Macrophage Cross-Talk in Obesity
  16. Altmetric Badge
    Chapter 15 Endothelial Dysfunction in Obesity
  17. Altmetric Badge
    Chapter 16 Diet-Induced Obesity and the Mechanism of Leptin Resistance
  18. Altmetric Badge
    Chapter 17 Influence of Antioxidants on Leptin Metabolism and its Role in the Pathogenesis of Obesity
  19. Altmetric Badge
    Chapter 18 Adiponectin-Resistance in Obesity
  20. Altmetric Badge
    Chapter 19 Non-Alcoholic Fatty Liver Disease
  21. Altmetric Badge
    Chapter 20 Lipotoxicity-Related Hematological Disorders in Obesity
  22. Altmetric Badge
    Chapter 21 MicroRNA and Adipogenesis
  23. Altmetric Badge
    Chapter 22 The Interactions Between Kynurenine, Folate, Methionine and Pteridine Pathways in Obesity
  24. Altmetric Badge
    Chapter 23 Eligibility and Success Criteria for Bariatric/Metabolic Surgery
  25. Altmetric Badge
    Chapter 24 Does Bariatric Surgery Improve Obesity Associated Comorbid Conditions
  26. Altmetric Badge
    Chapter 25 Obesity-associated Breast Cancer: Analysis of risk factors
  27. Altmetric Badge
    Chapter 26 Lipotoxicity in Obesity: Benefit of Olive Oil
Attention for Chapter 20: Lipotoxicity-Related Hematological Disorders in Obesity
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
1 X user

Citations

dimensions_citation
98 Dimensions

Readers on

mendeley
5 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Lipotoxicity-Related Hematological Disorders in Obesity
Chapter number 20
Book title
Obesity and Lipotoxicity
Published in
Advances in experimental medicine and biology, June 2017
DOI 10.1007/978-3-319-48382-5_20
Pubmed ID
Book ISBNs
978-3-31-948380-1, 978-3-31-948382-5
Authors

Ibrahim Celalettin Haznedaroglu, Umit Yavuz Malkan, Haznedaroglu, Ibrahim Celalettin, Malkan, Umit Yavuz

Editors

Ayse Basak Engin, Atilla Engin

Abstract

Lipotoxicity can mediate endothelial dysfunction in obesity. Altered endothelial cell phenotype during the pathobiological course of the lipotoxicity may lead to the hemostatic abnormalities, which is a hallmark of several hematological disorders. Impaired hemostasis could also be directly related to the numerous metabolic diseases such as hypertension, diabetes and atherosclerosis. On the other hand, local hematopoietic bone marrow (BM) renin-angiotensin system (RAS) contributes to the development of atherosclerosis via acting on the lipotoxicity processes. Local BM RAS, principally an autocrine/ paracrine/ intracrinehematological system, is located at the crossroads of cellular regulation, molecular interactions and the lipotoxicity-mediated vascular endothelial dysfunction. The positive regulatory role of plasma LDL on AT1 receptor-mediated hematopoietic stem cell (HSC) differentiation and the production of pro-atherogenic monocytes had been described. LDL-regulated HSC function may explain in part hypercholesterolemia-induced inflammation as well as the anti-inflammatory and anti-atherosclerotic effects of AT1 receptor blockers. The role of local adipose tissue RAS is directly related to the pathogenesis of metabolic derangements in obesity. There may be a crosstalk between local BM RAS and local adipose tissue RAS at the genomics and transcriptomics levels. The aim of this chapter is to review hematological alterations propagating the pathological influences of lipotoxicity on the vascular endothelium.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 5 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 5 100%

Demographic breakdown

Readers by professional status Count As %
Lecturer 2 40%
Other 1 20%
Unknown 2 40%
Readers by discipline Count As %
Medicine and Dentistry 2 40%
Nursing and Health Professions 1 20%
Unknown 2 40%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 13 September 2017.
All research outputs
#15,464,404
of 22,979,862 outputs
Outputs from Advances in experimental medicine and biology
#2,512
of 4,957 outputs
Outputs of similar age
#199,213
of 317,259 outputs
Outputs of similar age from Advances in experimental medicine and biology
#59
of 122 outputs
Altmetric has tracked 22,979,862 research outputs across all sources so far. This one is in the 22nd percentile – i.e., 22% of other outputs scored the same or lower than it.
So far Altmetric has tracked 4,957 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.1. This one is in the 37th percentile – i.e., 37% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 317,259 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 28th percentile – i.e., 28% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 122 others from the same source and published within six weeks on either side of this one. This one is in the 38th percentile – i.e., 38% of its contemporaries scored the same or lower than it.