↓ Skip to main content

Obesity and Lipotoxicity

Overview of attention for book
Cover of 'Obesity and Lipotoxicity'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 The Definition and Prevalence of Obesity and Metabolic Syndrome
  3. Altmetric Badge
    Chapter 2 Circadian Rhythms in Diet-Induced Obesity
  4. Altmetric Badge
    Chapter 3 Eat and Death: Chronic Over-Eating
  5. Altmetric Badge
    Chapter 4 Obesity, Persistent Organic Pollutants and Related Health Problems
  6. Altmetric Badge
    Chapter 5 Human Protein Kinases and Obesity
  7. Altmetric Badge
    Chapter 6 Fat Cell and Fatty Acid Turnover in Obesity
  8. Altmetric Badge
    Chapter 7 Adipose Tissue Function and Expandability as Determinants of Lipotoxicity and the Metabolic Syndrome
  9. Altmetric Badge
    Chapter 8 What Is Lipotoxicity?
  10. Altmetric Badge
    Chapter 9 The Pathogenesis of Obesity-Associated Adipose Tissue Inflammation
  11. Altmetric Badge
    Chapter 10 Microbiota and Lipotoxicity
  12. Altmetric Badge
    Chapter 11 Endoplasmic Reticulum Stress and Obesity
  13. Altmetric Badge
    Chapter 12 Insulin Resistance, Obesity and Lipotoxicity
  14. Altmetric Badge
    Chapter 13 Adipose Tissue Hypoxia in Obesity and Its Impact on Preadipocytes and Macrophages: Hypoxia Hypothesis
  15. Altmetric Badge
    Chapter 14 Adipocyte-Macrophage Cross-Talk in Obesity
  16. Altmetric Badge
    Chapter 15 Endothelial Dysfunction in Obesity
  17. Altmetric Badge
    Chapter 16 Diet-Induced Obesity and the Mechanism of Leptin Resistance
  18. Altmetric Badge
    Chapter 17 Influence of Antioxidants on Leptin Metabolism and its Role in the Pathogenesis of Obesity
  19. Altmetric Badge
    Chapter 18 Adiponectin-Resistance in Obesity
  20. Altmetric Badge
    Chapter 19 Non-Alcoholic Fatty Liver Disease
  21. Altmetric Badge
    Chapter 20 Lipotoxicity-Related Hematological Disorders in Obesity
  22. Altmetric Badge
    Chapter 21 MicroRNA and Adipogenesis
  23. Altmetric Badge
    Chapter 22 The Interactions Between Kynurenine, Folate, Methionine and Pteridine Pathways in Obesity
  24. Altmetric Badge
    Chapter 23 Eligibility and Success Criteria for Bariatric/Metabolic Surgery
  25. Altmetric Badge
    Chapter 24 Does Bariatric Surgery Improve Obesity Associated Comorbid Conditions
  26. Altmetric Badge
    Chapter 25 Obesity-associated Breast Cancer: Analysis of risk factors
  27. Altmetric Badge
    Chapter 26 Lipotoxicity in Obesity: Benefit of Olive Oil
Attention for Chapter 22: The Interactions Between Kynurenine, Folate, Methionine and Pteridine Pathways in Obesity
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
98 Dimensions

Readers on

mendeley
58 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
The Interactions Between Kynurenine, Folate, Methionine and Pteridine Pathways in Obesity
Chapter number 22
Book title
Obesity and Lipotoxicity
Published in
Advances in experimental medicine and biology, June 2017
DOI 10.1007/978-3-319-48382-5_22
Pubmed ID
Book ISBNs
978-3-31-948380-1, 978-3-31-948382-5
Authors

Ayse Basak Engin, Atilla Engin M.D., Ph.D., Engin, Ayse Basak, Engin, Atilla, Atilla Engin

Editors

Ayse Basak Engin, Atilla Engin

Abstract

Obesity activates both innate and adaptive immune responses in adipose tissue. Elevated levels of eosinophils with depression of monocyte and neutrophil indicate the deficiencies in the immune system of morbidly obese individuals. Actually, adipose tissue macrophages are functional antigen-presenting cells that promote the proliferation of interferon-gamma (IFN-gamma)-producing CD4+ T cells in adipose tissue of obese subjects. Eventually, diet-induced obesity is associated with the loss of tissue homeostasis and development of type 1 inflammatory responses in visceral adipose tissue. Activity of inducible indoleamine 2,3-dioxygenase-1 (IDO-1) plays a major role under pro-inflammatory, IFN-gamma dominated settings. One of the two rate-limiting enzymes which can metabolize tryptophan to kynurenine is IDO-1. Tumor necrosis factor-alpha (TNF-alpha) correlates with IDO-1 in adipose compartments. Actually, IDO-1-mediated tryptophan catabolism due to chronic immune activation is the cause of reduced tryptophan plasma levels and be considered as the driving force for food intake in morbidly obese patients. Thus, decrease in plasma tryptophan levels and subsequent reduction in serotonin (5-HT) production provokes satiety dysregulation that leads to increased caloric uptake and obesity. However, after bariatric surgery, weight reduction does not lead to normalization of IDO-1 activity. Furthermore, there is a connection between arginine and tryptophan metabolic pathways in the generation of reactive nitrogen intermediates. Hence, abdominal obesity is associated with vascular endothelial dysfunction and reduced nitric oxide (NO) availability. IFN-gamma-induced activation of the inducible nitric oxide synthase (iNOS) and dissociation of endothelial adenosine monophosphate activated protein kinase (AMPK)- phosphoinositide 3-kinase (PI3K)-protein kinase B (Akt)- endothelial NO synthase (eNOS) pathway enhances oxidative stress production secondary to high-fat diet. Thus, reduced endothelial NO availability correlates with the increase in plasma non-esterified fatty acids and triglycerides levels. Additionally, in obese patients, folate-deficiency leads to hyperhomocysteinemia. Folic acid confers protection against hyperhomocysteinemia-induced oxidative stress.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 58 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 58 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 10 17%
Student > Bachelor 7 12%
Student > Master 7 12%
Student > Ph. D. Student 6 10%
Student > Doctoral Student 3 5%
Other 7 12%
Unknown 18 31%
Readers by discipline Count As %
Medicine and Dentistry 8 14%
Biochemistry, Genetics and Molecular Biology 5 9%
Nursing and Health Professions 4 7%
Immunology and Microbiology 4 7%
Agricultural and Biological Sciences 2 3%
Other 11 19%
Unknown 24 41%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 16 July 2020.
All research outputs
#18,554,389
of 22,979,862 outputs
Outputs from Advances in experimental medicine and biology
#3,323
of 4,957 outputs
Outputs of similar age
#241,926
of 317,259 outputs
Outputs of similar age from Advances in experimental medicine and biology
#85
of 122 outputs
Altmetric has tracked 22,979,862 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 4,957 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.1. This one is in the 19th percentile – i.e., 19% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 317,259 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 13th percentile – i.e., 13% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 122 others from the same source and published within six weeks on either side of this one. This one is in the 21st percentile – i.e., 21% of its contemporaries scored the same or lower than it.