↓ Skip to main content

Auditory and Vestibular Research

Overview of attention for book
Cover of 'Auditory and Vestibular Research'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Helios® Gene Gun-Mediated Transfection of the Inner Ear Sensory Epithelium: Recent Updates
  3. Altmetric Badge
    Chapter 2 Auditory and Vestibular Research
  4. Altmetric Badge
    Chapter 3 Auditory and Vestibular Research
  5. Altmetric Badge
    Chapter 4 Auditory and Vestibular Research
  6. Altmetric Badge
    Chapter 5 Auditory and Vestibular Research
  7. Altmetric Badge
    Chapter 6 Auditory and Vestibular Research
  8. Altmetric Badge
    Chapter 7 Multiplexed Isobaric Tagging Protocols for Quantitative Mass Spectrometry Approaches to Auditory Research
  9. Altmetric Badge
    Chapter 8 Protein Quantitation of the Developing Cochlea Using Mass Spectrometry
  10. Altmetric Badge
    Chapter 9 Ultrastructural Identification and Colocalization of Interacting Proteins in the Murine Cochlea by Post-Embedding Immunogold Transmission Electron Microscopy
  11. Altmetric Badge
    Chapter 10 Surface Plasmon Resonance (SPR) Analysis of Binding Interactions of Inner-Ear Proteins
  12. Altmetric Badge
    Chapter 11 The Single-Molecule Approach to Membrane Protein Stoichiometry
  13. Altmetric Badge
    Chapter 12 Visualization of Live Cochlear Stereocilia at a Nanoscale Resolution Using Hopping Probe Ion Conductance Microscopy
  14. Altmetric Badge
    Chapter 13 Auditory and Vestibular Research
  15. Altmetric Badge
    Chapter 14 Neuroanatomical Tracing Techniques in the Ear: History, State of the Art, and Future Developments
  16. Altmetric Badge
    Chapter 15 Auditory and Vestibular Research
  17. Altmetric Badge
    Chapter 16 Auditory and Vestibular Research
  18. Altmetric Badge
    Chapter 17 Organotypic Culture of the Mouse Cochlea from Embryonic Day 12 to the Neonate
  19. Altmetric Badge
    Chapter 18 Auditory and Vestibular Research
  20. Altmetric Badge
    Chapter 19 Auditory and Vestibular Research
  21. Altmetric Badge
    Chapter 20 Auditory and Vestibular Research
  22. Altmetric Badge
    Chapter 21 Auditory and Vestibular Research
  23. Altmetric Badge
    Chapter 22 Development of Cell-Based High-Throughput Chemical Screens for Protection Against Cisplatin-Induced Ototoxicity
  24. Altmetric Badge
    Chapter 23 Auditory and Vestibular Research
  25. Altmetric Badge
    Chapter 24 Auditory and Vestibular Research
  26. Altmetric Badge
    Chapter 25 Method for Dissecting the Auditory Epithelium (Basilar Papilla) in Developing Chick Embryos
  27. Altmetric Badge
    Chapter 26 Whole-Cell Patch-Clamp Recording of Mouse and Rat Inner Hair Cells in the Intact Organ of Corti
  28. Altmetric Badge
    Chapter 27 Auditory and Vestibular Research
  29. Altmetric Badge
    Chapter 28 A Walkthrough of Nonlinear Capacitance Measurement of Outer Hair Cells
  30. Altmetric Badge
    Chapter 29 In Vitro Functional Assessment of Adult Spiral Ganglion Neurons (SGNs)
  31. Altmetric Badge
    Chapter 30 Auditory and Vestibular Research
Attention for Chapter 3: Auditory and Vestibular Research
Altmetric Badge

Citations

dimensions_citation
4 Dimensions

Readers on

mendeley
17 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Auditory and Vestibular Research
Chapter number 3
Book title
Auditory and Vestibular Research
Published in
Methods in molecular biology, January 2016
DOI 10.1007/978-1-4939-3615-1_3
Pubmed ID
Book ISBNs
978-1-4939-3613-7, 978-1-4939-3615-1
Authors

Gomes, Michelle M, Wang, Lingyan, Jiang, Han, Kahl, Christoph A, Brigande, John V, Michelle M. Gomes, Lingyan Wang, Han Jiang, Christoph A. Kahl, John V. Brigande

Editors

Bernd Sokolowski

Abstract

There is keen interest to define gene therapies aimed at restoration of auditory and vestibular function in the diseased or damaged mammalian inner ear. A persistent limitation of regenerative medical strategies that seek to correct or modify gene expression in the sensory epithelia of the inner ear involves efficacious delivery of a therapeutic genetic construct. Our approach is to define methodologies that enable fetal gene transfer to the developing mammalian inner ear in an effort to correct defective gene expression during formation of the sensory epithelia or during early postnatal life. Conceptually, the goal is to atraumatically introduce the genetic construct into the otocyst-staged mouse inner ear and transfect otic progenitors that give rise to sensory hair cells and supporting cells. Our long-term goal is to define therapeutic interventions for congenital deafness and balance disorders with the expectation that the approach may also be exploited for therapeutic intervention postnatally.In the inaugural volume of this series, we introduced electroporation-mediated gene transfer to the developing mouse inner ear that encompassed our mouse survival surgery and transuterine microinjection protocols (Brigande et al., Methods Mol Biol 493:125-139, 2009). In this chapter, we first briefly update our use of sodium pentobarbital anesthesia, our preferred anesthetic for mouse ventral laparotomy, in light of its rapidly escalating cost. Next, we define a rapid, cost-effective method to produce recombinant adeno-associated virus (rAAV) for efficient gene transfer to the developing mouse inner ear. Our immediate goal is to provide a genetic toolkit that will permit the definition and validation of gene therapies in mouse models of human deafness and balance disorders.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 17 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 17 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 4 24%
Student > Master 3 18%
Student > Postgraduate 2 12%
Student > Bachelor 1 6%
Other 1 6%
Other 2 12%
Unknown 4 24%
Readers by discipline Count As %
Medicine and Dentistry 5 29%
Biochemistry, Genetics and Molecular Biology 3 18%
Business, Management and Accounting 1 6%
Veterinary Science and Veterinary Medicine 1 6%
Neuroscience 1 6%
Other 1 6%
Unknown 5 29%