↓ Skip to main content

Small Molecule Microarrays

Overview of attention for book
Cover of 'Small Molecule Microarrays'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 The Expanding World of Small Molecule Microarrays
  3. Altmetric Badge
    Chapter 2 Novel Substrates for Microarrays
  4. Altmetric Badge
    Chapter 3 Fabrication of Bio-function-Preserved Saccharide Microarray Chips with Cyanuric Chloride as a Rotatable Linker
  5. Altmetric Badge
    Chapter 4 Fabrication of Carbohydrate Microarrays by Boronate Formation
  6. Altmetric Badge
    Chapter 5 Clickable Polymeric Coating for Glycan Microarrays
  7. Altmetric Badge
    Chapter 6 A Versatile Microarray Immobilization Strategy Based on a Biorthogonal Reaction Between Tetrazine and Trans-Cyclooctene
  8. Altmetric Badge
    Chapter 7 Label-Free Sensing on Microarrays
  9. Altmetric Badge
    Chapter 8 Optical Microscopy for Detecting Binding on Small Molecule Microarrays
  10. Altmetric Badge
    Chapter 9 Array-on-Array Strategy For Activity-Based Enzyme Profiling
  11. Altmetric Badge
    Chapter 10 Protein–Protein Interaction Inhibitors of BRCA1 Discovered Using Small Molecule Microarrays
  12. Altmetric Badge
    Chapter 11 Discovery of RNA Binding Small Molecules Using Small Molecule Microarrays
  13. Altmetric Badge
    Chapter 12 Profiling Phosphopeptide-Binding Domain Recognition Specificity Using Peptide Microarrays
  14. Altmetric Badge
    Chapter 13 Validation Procedure for Multiplex Antibiotic Immunoassays Using Flow-Based Chemiluminescence Microarrays
  15. Altmetric Badge
    Chapter 14 Large-Scale Interaction Profiling of Protein Domains Through Proteomic Peptide-Phage Display Using Custom Peptidomes
  16. Altmetric Badge
    Chapter 15 Synthetic Glycan Microarrays
  17. Altmetric Badge
    Chapter 16 Screening Mammalian Cells on a Hydrogel: Functionalized Small Molecule Microarray
Attention for Chapter 13: Validation Procedure for Multiplex Antibiotic Immunoassays Using Flow-Based Chemiluminescence Microarrays
Altmetric Badge

Citations

dimensions_citation
3 Dimensions

Readers on

mendeley
14 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Validation Procedure for Multiplex Antibiotic Immunoassays Using Flow-Based Chemiluminescence Microarrays
Chapter number 13
Book title
Small Molecule Microarrays
Published in
Methods in molecular biology, November 2016
DOI 10.1007/978-1-4939-6584-7_13
Pubmed ID
Book ISBNs
978-1-4939-6582-3, 978-1-4939-6584-7
Authors

Verena Katharina Meyer, Daniela Meloni, Fabio Olivo, Erwin Märtlbauer, Richard Dietrich, Reinhard Niessner, Michael Seidel

Editors

Mahesh Uttamchandani, Shao Q. Yao

Abstract

Small molecules like antibiotics or other pharmaceuticals can be detected and quantified, among others, with indirect competitive immunoassays. With regard to multiplex quantification, these tests can be performed as chemiluminescence microarray immunoassays, in which, in principle, the analyte in the sample and the same substance immobilized on the chip surface compete for a limited number of specific antibody binding sites. The amount of the specific primary antibody that has been bound to the surface is visualized by means of a chemiluminescence reaction.Validated quantitative confirmatory methods for the detection of contaminants, for example drug residues, in food samples usually comprise chromatographic analysis and spectrometric detection, e.g., HPLC-MS, GC-MS, or GC with electron capture detection. Here, we describe a validation procedure (according to the Commission Decision of the European Communities 2002/657/EC) for multiplex immunoassays performed as flow-through chemiluminescence microarrays, using the example of a small molecule microarray for the simultaneous detection of 13 antibiotics in milk. By this means, we suggest to accept multianalyte immunoassays as confirmatory methods as well, to benefit from the advantages of a fast automated method that does not need any pretreatment of the sample. The presented microarray chip is regenerable, so an internal calibration is implemented. Therefore, the analytical results are highly precise, combined with low costs (the aim for commercialization is less than 1 € per analyte per sample, this is significantly less than HPLC-MS).

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 14 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 14 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 5 36%
Student > Doctoral Student 2 14%
Unspecified 1 7%
Lecturer > Senior Lecturer 1 7%
Lecturer 1 7%
Other 2 14%
Unknown 2 14%
Readers by discipline Count As %
Chemistry 5 36%
Veterinary Science and Veterinary Medicine 2 14%
Unspecified 1 7%
Biochemistry, Genetics and Molecular Biology 1 7%
Environmental Science 1 7%
Other 2 14%
Unknown 2 14%