↓ Skip to main content

Biobanking and Cryopreservation of Stem Cells

Overview of attention for book
Biobanking and Cryopreservation of Stem Cells
Springer International Publishing

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Key Issues Related to Cryopreservation and Storage of Stem Cells and Cancer Stem Cells: Protecting Biological Integrity
  3. Altmetric Badge
    Chapter 2 Cryopreservation: Evolution of Molecular Based Strategies
  4. Altmetric Badge
    Chapter 3 Fundamental Principles of Stem Cell Banking
  5. Altmetric Badge
    Chapter 4 Biobanking: An Important Resource for Precision Medicine in Glioblastoma
  6. Altmetric Badge
    Chapter 5 Slow Cooling Cryopreservation Optimized to Human Pluripotent Stem Cells
  7. Altmetric Badge
    Chapter 6 Cryopreservation in Closed Bag Systems as an Alternative to Clean Rooms for Preparations of Peripheral Blood Stem Cells
  8. Altmetric Badge
    Chapter 7 Cryopreserved or Fresh Mesenchymal Stromal Cells: Only a Matter of Taste or Key to Unleash the Full Clinical Potential of MSC Therapy?
  9. Altmetric Badge
    Chapter 8 Biobanking of Human Mesenchymal Stem Cells: Future Strategy to Facilitate Clinical Applications
  10. Altmetric Badge
    Chapter 9 Menstrual Blood-Derived Stem Cells: In Vitro and In Vivo Characterization of Functional Effects
  11. Altmetric Badge
    Chapter 10 Cryopreservation of Human Pluripotent Stem Cell-Derived Cardiomyocytes: Strategies, Challenges, and Future Directions
  12. Altmetric Badge
    Chapter 11 Cryopreserved Adipose Tissue-Derived Stromal/Stem Cells: Potential for Applications in Clinic and Therapy
  13. Altmetric Badge
    Chapter 12 Banking of Adipose- and Cord Tissue-Derived Stem Cells: Technical and Regulatory Issues
  14. Altmetric Badge
    Chapter 13 Mature Oocyte Cryopreservation for Fertility Preservation
  15. Altmetric Badge
    Chapter 14 Stem Cell Banking and Its Impact on Cardiac Regenerative Medicine
  16. Altmetric Badge
    Chapter 15 Preservation of Ocular Epithelial Limbal Stem Cells: The New Frontier in Regenerative Medicine
  17. Altmetric Badge
    Chapter 16 Cryopreservation of Hair-Follicle Associated Pluripotent (HAP) Stem Cells Maintains Differentiation and Hair-Growth Potential
  18. Altmetric Badge
    Chapter 17 Cryopreservation and Banking of Dental Stem Cells
Attention for Chapter 14: Stem Cell Banking and Its Impact on Cardiac Regenerative Medicine
Altmetric Badge

Citations

dimensions_citation
16 Dimensions

Readers on

mendeley
11 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Stem Cell Banking and Its Impact on Cardiac Regenerative Medicine
Chapter number 14
Book title
Biobanking and Cryopreservation of Stem Cells
Published in
Advances in experimental medicine and biology, November 2016
DOI 10.1007/978-3-319-45457-3_14
Pubmed ID
Book ISBNs
978-3-31-945455-9, 978-3-31-945457-3
Authors

Silvana Bardelli, Marco Moccetti

Editors

Feridoun Karimi-Busheri, Michael Weinfeld

Abstract

Cardiovascular diseases, including heart failure, are the most frequent cause of death annually, even higher than any other pathologies. Specifically, patients who suffer from myocardial infarction may encounter adverse remodeling processes of the heart that can ultimately lead to heart failure. Prognosis of patients affected by heart failure is very poor with 5-year mortality close to 50 %. Despite the impressive progress in the clinical treatment of heart failure in recent years, heart transplantation is still required to avoid death as the result of the inexorable decline in cardiac function. Unfortunately, the availability of donor human hearts for transplantation largely fails to cover the number of potential recipient requests. From this urgent unmet clinical need the interest in stem cell applications for heart regeneration made its start, and has rapidly grown in the last decades. Indeed, the discovery and application of stem and progenitor cells as therapeutic agents has raised substantial interest with the objective of reversing these processes, and ultimately inducing cardiac regeneration. In this scenario, the role of biobanking may play a remarkable role to provide cells at the right time according to the patient's clinical needs, mostly for autologous use in the acute setting of myocardial infarction, largely reducing the time needed for cell preparation and expansion before administration.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 11 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 11 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 3 27%
Student > Doctoral Student 2 18%
Student > Postgraduate 2 18%
Student > Bachelor 1 9%
Librarian 1 9%
Other 0 0%
Unknown 2 18%
Readers by discipline Count As %
Medicine and Dentistry 3 27%
Engineering 2 18%
Earth and Planetary Sciences 1 9%
Biochemistry, Genetics and Molecular Biology 1 9%
Unknown 4 36%