↓ Skip to main content

In Vitro Mutagenesis

Overview of attention for book
Cover of 'In Vitro Mutagenesis'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Design and Validation of CRISPR/Cas9 Systems for Targeted Gene Modification in Induced Pluripotent Stem Cells.
  3. Altmetric Badge
    Chapter 2 Mutagenesis and Genome Engineering of Epstein-Barr Virus in Cultured Human Cells by CRISPR/Cas9.
  4. Altmetric Badge
    Chapter 3 Use of CRISPR/Cas Genome Editing Technology for Targeted Mutagenesis in Rice.
  5. Altmetric Badge
    Chapter 4 All-in-One CRISPR-Cas9/FokI-dCas9 Vector-Mediated Multiplex Genome Engineering in Cultured Cells.
  6. Altmetric Badge
    Chapter 5 CRISPR/Cas9-Mediated Mutagenesis of Human Pluripotent Stem Cells in Defined Xeno-Free E8 Medium.
  7. Altmetric Badge
    Chapter 6 Development of CRISPR/Cas9 for Efficient Genome Editing in Toxoplasma gondii.
  8. Altmetric Badge
    Chapter 7 Generation of Stable Knockout Mammalian Cells by TALEN-Mediated Locus-Specific Gene Editing.
  9. Altmetric Badge
    Chapter 8 Efficient Generation of Gene-Modified Mice by Haploid Embryonic Stem Cell-Mediated Semi-cloned Technology.
  10. Altmetric Badge
    Chapter 9 Insertion of Group II Intron-Based Ribozyme Switches into Homing Endonuclease Genes.
  11. Altmetric Badge
    Chapter 10 Generating a Genome Editing Nuclease for Targeted Mutagenesis in Human Cells.
  12. Altmetric Badge
    Chapter 11 Use of Group II Intron Technology for Targeted Mutagenesis in Chlamydia trachomatis.
  13. Altmetric Badge
    Chapter 12 In Silico Approaches to Identify Mutagenesis Targets to Probe and Alter Protein-Cofactor and Protein-Protein Functional Relationships.
  14. Altmetric Badge
    Chapter 13 In Silico Prediction of Deleteriousness for Nonsynonymous and Splice-Altering Single Nucleotide Variants in the Human Genome.
  15. Altmetric Badge
    Chapter 14 In Silico Methods for Analyzing Mutagenesis Targets.
  16. Altmetric Badge
    Chapter 15 Methods for Detecting Critical Residues in Proteins.
  17. Altmetric Badge
    Chapter 16 A Method for Bioinformatic Analysis of Transposon Insertion Sequencing (INSeq) Results for Identification of Microbial Fitness Determinants.
  18. Altmetric Badge
    Chapter 17 Application of In Vitro Transposon Mutagenesis to Erythromycin Strain Improvement in Saccharopolyspora erythraea.
  19. Altmetric Badge
    Chapter 18 Engineering Gram-Negative Microbial Cell Factories Using Transposon Vectors.
  20. Altmetric Badge
    Chapter 19 PERMutation Using Transposase Engineering (PERMUTE): A Simple Approach for Constructing Circularly Permuted Protein Libraries.
  21. Altmetric Badge
    Chapter 20 Transposon Insertion Mutagenesis for Archaeal Gene Discovery.
  22. Altmetric Badge
    Chapter 21 Genome-Wide Transposon Mutagenesis in Mycobacterium tuberculosis and Mycobacterium smegmatis.
  23. Altmetric Badge
    Chapter 22 Multiple Site-Directed and Saturation Mutagenesis by the Patch Cloning Method.
  24. Altmetric Badge
    Chapter 23 Seamless Ligation Cloning Extract (SLiCE) Method Using Cell Lysates from Laboratory Escherichia coli Strains and its Application to SLiP Site-Directed Mutagenesis.
  25. Altmetric Badge
    Chapter 24 Facile Site-Directed Mutagenesis of Large Constructs Using Gibson Isothermal DNA Assembly.
  26. Altmetric Badge
    Chapter 25 Revised Mechanism and Improved Efficiency of the QuikChange Site-Directed Mutagenesis Method.
  27. Altmetric Badge
    Chapter 26 An In Vitro Single-Primer Site-Directed Mutagenesis Method for Use in Biotechnology.
  28. Altmetric Badge
    Chapter 27 Use of Megaprimer and Overlapping Extension PCR (OE-PCR) to Mutagenize and Enhance Cyclodextrin Glucosyltransferase (CGTase) Function.
  29. Altmetric Badge
    Chapter 28 Step-By-Step In Vitro Mutagenesis: Lessons From Fucose-Binding Lectin PA-IIL.
  30. Altmetric Badge
    Chapter 29 Analytical Methods for Assessing the Effects of Site-Directed Mutagenesis on Protein-Cofactor and Protein-Protein Functional Relationships.
  31. Altmetric Badge
    Chapter 30 Biochemical and Biophysical Methods to Examine the Effects of Site-Directed Mutagenesis on Enzymatic Activities and Interprotein Interactions.
  32. Altmetric Badge
    Chapter 31 Use of Random and Site-Directed Mutagenesis to Probe Protein Structure-Function Relationships: Applied Techniques in the Study of Helicobacter pylori.
  33. Altmetric Badge
    Chapter 32 Novel Random Mutagenesis Method for Directed Evolution.
  34. Altmetric Badge
    Chapter 33 Random Mutagenesis by Error-Prone Polymerase Chain Reaction Using a Heavy Water Solvent.
  35. Altmetric Badge
    Chapter 34 Development and Use of a Novel Random Mutagenesis Method: In Situ Error-Prone PCR (is-epPCR).
Attention for Chapter 10: Generating a Genome Editing Nuclease for Targeted Mutagenesis in Human Cells.
Altmetric Badge

About this Attention Score

  • Above-average Attention Score compared to outputs of the same age (52nd percentile)
  • Good Attention Score compared to outputs of the same age and source (71st percentile)

Mentioned by

twitter
4 X users

Citations

dimensions_citation
7 Dimensions

Readers on

mendeley
5 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Generating a Genome Editing Nuclease for Targeted Mutagenesis in Human Cells.
Chapter number 10
Book title
In Vitro Mutagenesis
Published in
Methods in molecular biology, January 2017
DOI 10.1007/978-1-4939-6472-7_10
Pubmed ID
Book ISBNs
978-1-4939-6470-3, 978-1-4939-6472-7
Authors

Zhenyu He, Kehkooi Kee

Editors

Andrew Reeves

Abstract

Gene targeting and editing is an essential tool for both basic research and clinical application such as gene therapy. Several endonucleases have been invented to fulfill these purposes, including zinc finger nucleases, TALEN, and CRISPR/Cas9. Although all of these systems can target DNA sequence with high efficiency, they also exert off-target effects and genotoxicity. The off-target effects might not hinder their usage in animal models because the correctly targeted cells can be selected for further studies. However, the off-target effects could cause mutations which may be damaging or cancerous to the patients. In this chapter, we describe a genome-editing nuclease method which relies on modifying specific amino acids on a monomeric endonuclease, I-SceI, to recognize a targeted sequence in the human genome. This nuclease is small in size and shows a much lower genotoxicity compared to other nucleases including CRISPR/Cas9.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 5 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 5 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 1 20%
Professor > Associate Professor 1 20%
Student > Bachelor 1 20%
Unknown 2 40%
Readers by discipline Count As %
Medicine and Dentistry 2 40%
Social Sciences 1 20%
Agricultural and Biological Sciences 1 20%
Unknown 1 20%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 07 January 2018.
All research outputs
#12,772,692
of 22,890,496 outputs
Outputs from Methods in molecular biology
#3,212
of 13,134 outputs
Outputs of similar age
#196,093
of 420,414 outputs
Outputs of similar age from Methods in molecular biology
#295
of 1,074 outputs
Altmetric has tracked 22,890,496 research outputs across all sources so far. This one is in the 43rd percentile – i.e., 43% of other outputs scored the same or lower than it.
So far Altmetric has tracked 13,134 research outputs from this source. They receive a mean Attention Score of 3.4. This one has done well, scoring higher than 75% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 420,414 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 52% of its contemporaries.
We're also able to compare this research output to 1,074 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 71% of its contemporaries.