↓ Skip to main content

Injury Models of the Central Nervous System

Overview of attention for book
Cover of 'Injury Models of the Central Nervous System'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 The History and Evolution of Experimental Traumatic Brain Injury Models.
  3. Altmetric Badge
    Chapter 2 Clinical Traumatic Brain Injury in the Preclinical Setting.
  4. Altmetric Badge
    Chapter 3 Injury Models of the Central Nervous System
  5. Altmetric Badge
    Chapter 4 Traumatic Brain Injury Models in Animals.
  6. Altmetric Badge
    Chapter 5 Systematic Review of Traumatic Brain Injury Animal Models.
  7. Altmetric Badge
    Chapter 6 Injury Models of the Central Nervous System
  8. Altmetric Badge
    Chapter 7 Bridging the Gap of Standardized Animals Models for Blast Neurotrauma: Methodology for Appropriate Experimental Testing.
  9. Altmetric Badge
    Chapter 8 Cellular Mechanisms and Behavioral Outcomes in Blast-Induced Neurotrauma: Comparing Experimental Setups.
  10. Altmetric Badge
    Chapter 9 Application of Systems Biology to Neuroproteomics: The Path to Enhanced Theranostics in Traumatic Brain Injury.
  11. Altmetric Badge
    Chapter 10 Role of Systems Biology in Brain Injury Biomarker Discovery: Neuroproteomics Application.
  12. Altmetric Badge
    Chapter 11 The Controlled Cortical Impact Model of Experimental Brain Trauma: Overview, Research Applications, and Protocol.
  13. Altmetric Badge
    Chapter 12 Weight Drop Models in Traumatic Brain Injury.
  14. Altmetric Badge
    Chapter 13 Injury Models of the Central Nervous System
  15. Altmetric Badge
    Chapter 14 Lateral (Parasagittal) Fluid Percussion Model of Traumatic Brain Injury.
  16. Altmetric Badge
    Chapter 15 Injury Models of the Central Nervous System
  17. Altmetric Badge
    Chapter 16 Experimental Models for Neurotrauma Research.
  18. Altmetric Badge
    Chapter 17 A Porcine Model of Traumatic Brain Injury via Head Rotational Acceleration.
  19. Altmetric Badge
    Chapter 18 Injury Models of the Central Nervous System
  20. Altmetric Badge
    Chapter 19 Injury Models of the Central Nervous System
  21. Altmetric Badge
    Chapter 20 Thromboembolic Model of Cerebral Ischemia and Reperfusion in Mice.
  22. Altmetric Badge
    Chapter 21 Injury Models of the Central Nervous System
  23. Altmetric Badge
    Chapter 22 Injury Models of the Central Nervous System
  24. Altmetric Badge
    Chapter 23 Microdialysis as Clinical Evaluation of Therapeutic Hypothermia in Rat Subdural Hematoma Model.
  25. Altmetric Badge
    Chapter 24 Repetitive Transcranial Magnetic Stimulation as a Novel Therapy in Animal Models of Traumatic Brain Injury.
  26. Altmetric Badge
    Chapter 25 Experimental Models Combining TBI, Hemorrhagic Shock, and Hypoxemia.
  27. Altmetric Badge
    Chapter 26 Injury Models of the Central Nervous System
  28. Altmetric Badge
    Chapter 27 Animal Models of Posttraumatic Seizures and Epilepsy.
  29. Altmetric Badge
    Chapter 28 Closed-Head TBI Model of Multiple Morbidity.
  30. Altmetric Badge
    Chapter 29 Cognitive Evaluation Using Morris Water Maze in Neurotrauma.
  31. Altmetric Badge
    Chapter 30 Assessment of Cognitive Function in the Water Maze Task: Maximizing Data Collection and Analysis in Animal Models of Brain Injury.
  32. Altmetric Badge
    Chapter 31 Detecting Behavioral Deficits Post Traumatic Brain Injury in Rats.
  33. Altmetric Badge
    Chapter 32 Advanced and High-Throughput Method for Mitochondrial Bioenergetics Evaluation in Neurotrauma.
  34. Altmetric Badge
    Chapter 33 Determination of Vascular Reactivity of Middle Cerebral Arteries from Stroke and Spinal Cord Injury Animal Models Using Pressure Myography.
  35. Altmetric Badge
    Chapter 34 Assessment of Basilar Artery Reactivity in Stroke and Subarachnoid Hemorrhage Using Wire Myograph.
  36. Altmetric Badge
    Chapter 35 Injury Models of the Central Nervous System
  37. Altmetric Badge
    Chapter 36 A Simplified Workflow for Protein Quantitation of Rat Brain Tissues Using Label-Free Proteomics and Spectral Counting.
  38. Altmetric Badge
    Chapter 37 Phenotypic Screening of Small-Molecule Inhibitors: Implications for Therapeutic Discovery and Drug Target Development in Traumatic Brain Injury.
  39. Altmetric Badge
    Chapter 38 Injury Models of the Central Nervous System
  40. Altmetric Badge
    Chapter 39 Injury Models of the Central Nervous System
  41. Altmetric Badge
    Chapter 40 Challenging the Paradigms of Experimental TBI Models: From Preclinical to Clinical Practice.
Attention for Chapter 32: Advanced and High-Throughput Method for Mitochondrial Bioenergetics Evaluation in Neurotrauma.
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Good Attention Score compared to outputs of the same age and source (75th percentile)

Mentioned by

twitter
3 X users
facebook
1 Facebook page

Citations

dimensions_citation
13 Dimensions

Readers on

mendeley
15 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Advanced and High-Throughput Method for Mitochondrial Bioenergetics Evaluation in Neurotrauma.
Chapter number 32
Book title
Injury Models of the Central Nervous System
Published in
Methods in molecular biology, January 2016
DOI 10.1007/978-1-4939-3816-2_32
Pubmed ID
Book ISBNs
978-1-4939-3814-8, 978-1-4939-3816-2
Authors

Jignesh D. Pandya Ph.D., Patrick G. Sullivan, Lai Yee Leung, Frank C. Tortella, Deborah A. Shear, Ying Deng-Bryant, Pandya, Jignesh D, Sullivan, Patrick G, Leung, Lai Yee, Tortella, Frank C, Shear, Deborah A, Deng-Bryant, Ying, Jignesh D. Pandya, Pandya, Jignesh D., Sullivan, Patrick G., Tortella, Frank C., Shear, Deborah A.

Editors

Firas H. Kobeissy, C. Edward Dixon, Ronald L. Hayes, Stefania Mondello

Abstract

Mitochondrial dysfunction is one of the key posttraumatic neuropathological events observed in various experimental models of traumatic brain injury (TBI). The extent of mitochondrial dysfunction has been associated with the severity and time course of secondary injury following brain trauma. Critically, several mitochondrial targeting preclinical drugs used in experimental TBI models have shown improved mitochondrial bioenergetics, together with cortical tissue sparing and cognitive behavioral outcome. Mitochondria, being a central regulator of cellular metabolic pathways and energy producer of cells, are of a great interest for researchers aiming to adopt cutting-edge methodology for mitochondrial bioenergetics assessment. The traditional way of mitochondrial bioenergetics analysis utilizing a Clark-type oxygen electrode (aka. oxytherm) is time-consuming and labor-intensive. In the present chapter, we describe an advanced and high-throughput method for mitochondrial bioenergetics assessments utilizing the Seahorse Biosciences XF(e)24 Flux Analyzer. This allows for simultaneous measurement of multiple samples with higher efficiency than the oxytherm procedure. This chapter provides helpful guidelines for conducting mitochondrial isolation and studying mitochondrial bioenergetics in brain tissue homogenates following experimental TBI.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 15 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 15 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 4 27%
Student > Doctoral Student 3 20%
Student > Postgraduate 2 13%
Researcher 2 13%
Other 1 7%
Other 0 0%
Unknown 3 20%
Readers by discipline Count As %
Neuroscience 4 27%
Psychology 2 13%
Biochemistry, Genetics and Molecular Biology 1 7%
Nursing and Health Professions 1 7%
Medicine and Dentistry 1 7%
Other 1 7%
Unknown 5 33%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 25 March 2019.
All research outputs
#14,383,190
of 24,266,964 outputs
Outputs from Methods in molecular biology
#3,859
of 13,665 outputs
Outputs of similar age
#197,551
of 402,436 outputs
Outputs of similar age from Methods in molecular biology
#359
of 1,460 outputs
Altmetric has tracked 24,266,964 research outputs across all sources so far. This one is in the 40th percentile – i.e., 40% of other outputs scored the same or lower than it.
So far Altmetric has tracked 13,665 research outputs from this source. They receive a mean Attention Score of 3.5. This one has gotten more attention than average, scoring higher than 71% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 402,436 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 50% of its contemporaries.
We're also able to compare this research output to 1,460 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 75% of its contemporaries.