↓ Skip to main content

Computational Protein Design

Overview of attention for book
Cover of 'Computational Protein Design'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 The Framework of Computational Protein Design.
  3. Altmetric Badge
    Chapter 2 Achievements and Challenges in Computational Protein Design.
  4. Altmetric Badge
    Chapter 3 Production of Computationally Designed Small Soluble- and Membrane-Proteins: Cloning, Expression, and Purification.
  5. Altmetric Badge
    Chapter 4 Deterministic Search Methods for Computational Protein Design.
  6. Altmetric Badge
    Chapter 5 Geometric Potentials for Computational Protein Sequence Design.
  7. Altmetric Badge
    Chapter 6 Modeling Binding Affinity of Pathological Mutations for Computational Protein Design.
  8. Altmetric Badge
    Chapter 7 Multistate Computational Protein Design with Backbone Ensembles.
  9. Altmetric Badge
    Chapter 8 Integration of Molecular Dynamics Based Predictions into the Optimization of De Novo Protein Designs: Limitations and Benefits.
  10. Altmetric Badge
    Chapter 9 Applications of Normal Mode Analysis Methods in Computational Protein Design.
  11. Altmetric Badge
    Chapter 10 Computational Protein Design Under a Given Backbone Structure with the ABACUS Statistical Energy Function.
  12. Altmetric Badge
    Chapter 11 Computational Protein Design Through Grafting and Stabilization.
  13. Altmetric Badge
    Chapter 12 An Evolution-Based Approach to De Novo Protein Design.
  14. Altmetric Badge
    Chapter 13 Parallel Computational Protein Design.
  15. Altmetric Badge
    Chapter 14 Computational Protein Design
  16. Altmetric Badge
    Chapter 15 OSPREY Predicts Resistance Mutations Using Positive and Negative Computational Protein Design.
  17. Altmetric Badge
    Chapter 16 Evolution-Inspired Computational Design of Symmetric Proteins.
  18. Altmetric Badge
    Chapter 17 A Protocol for the Design of Protein and Peptide Nanostructure Self-Assemblies Exploiting Synthetic Amino Acids.
  19. Altmetric Badge
    Chapter 18 Probing Oligomerized Conformations of Defensin in the Membrane.
  20. Altmetric Badge
    Chapter 19 Computational Design of Ligand Binding Proteins.
  21. Altmetric Badge
    Chapter 20 EpiSweep: Computationally Driven Reengineering of Therapeutic Proteins to Reduce Immunogenicity While Maintaining Function.
  22. Altmetric Badge
    Chapter 21 Computational Tools for Aiding Rational Antibody Design.
  23. Altmetric Badge
    Chapter 22 Computational Design of Membrane Curvature-Sensing Peptides.
  24. Altmetric Badge
    Chapter 23 Computational Tools for Allosteric Drug Discovery: Site Identification and Focus Library Design.
Attention for Chapter 13: Parallel Computational Protein Design.
Altmetric Badge

Citations

dimensions_citation
13 Dimensions

Readers on

mendeley
11 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Parallel Computational Protein Design.
Chapter number 13
Book title
Computational Protein Design
Published in
Methods in molecular biology, January 2017
DOI 10.1007/978-1-4939-6637-0_13
Pubmed ID
Book ISBNs
978-1-4939-6635-6, 978-1-4939-6637-0
Authors

Yichao Zhou, Bruce R. Donald, Jianyang Zeng, Zhou, Yichao, Donald, Bruce R, Zeng, Jianyang, Donald, Bruce R.

Editors

Ilan Samish

Abstract

Computational structure-based protein design (CSPD) is an important problem in computational biology, which aims to design or improve a prescribed protein function based on a protein structure template. It provides a practical tool for real-world protein engineering applications. A popular CSPD method that guarantees to find the global minimum energy solution (GMEC) is to combine both dead-end elimination (DEE) and A* tree search algorithms. However, in this framework, the A* search algorithm can run in exponential time in the worst case, which may become the computation bottleneck of large-scale computational protein design process. To address this issue, we extend and add a new module to the OSPREY program that was previously developed in the Donald lab (Gainza et al., Methods Enzymol 523:87, 2013) to implement a GPU-based massively parallel A* algorithm for improving protein design pipeline. By exploiting the modern GPU computational framework and optimizing the computation of the heuristic function for A* search, our new program, called gOSPREY, can provide up to four orders of magnitude speedups in large protein design cases with a small memory overhead comparing to the traditional A* search algorithm implementation, while still guaranteeing the optimality. In addition, gOSPREY can be configured to run in a bounded-memory mode to tackle the problems in which the conformation space is too large and the global optimal solution cannot be computed previously. Furthermore, the GPU-based A* algorithm implemented in the gOSPREY program can be combined with the state-of-the-art rotamer pruning algorithms such as iMinDEE (Gainza et al., PLoS Comput Biol 8:e1002335, 2012) and DEEPer (Hallen et al., Proteins 81:18-39, 2013) to also consider continuous backbone and side-chain flexibility.

Mendeley readers

The data shown below were compiled from readership statistics for 11 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United Kingdom 1 9%
Unknown 10 91%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 4 36%
Student > Ph. D. Student 2 18%
Researcher 2 18%
Other 1 9%
Professor > Associate Professor 1 9%
Other 0 0%
Unknown 1 9%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 3 27%
Computer Science 2 18%
Engineering 2 18%
Psychology 1 9%
Agricultural and Biological Sciences 1 9%
Other 0 0%
Unknown 2 18%