↓ Skip to main content

The Long and Short Non-coding RNAs in Cancer Biology

Overview of attention for book
Attention for Chapter 8: The Long and Short Non-coding RNAs in Cancer Biology
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Good Attention Score compared to outputs of the same age and source (67th percentile)

Mentioned by

twitter
5 X users

Citations

dimensions_citation
10 Dimensions

Readers on

mendeley
14 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
The Long and Short Non-coding RNAs in Cancer Biology
Chapter number 8
Book title
The Long and Short Non-coding RNAs in Cancer Biology
Published in
Advances in experimental medicine and biology, July 2016
DOI 10.1007/978-981-10-1498-7_8
Pubmed ID
Book ISBNs
978-9-81-101496-3, 978-9-81-101498-7
Authors

Khorshidi, Azam, Dhaliwal, Preet, Yang, Burton B, Azam Khorshidi, Preet Dhaliwal, Burton B. Yang

Editors

Erwei Song

Abstract

Solid tumors require angiogenesis to grow beyond 2 mm in size. In most cases, tumor cells undergo angiogenic switch and secrete substances that are required for generation of new capillary sprouting from existing blood vessels. Tumor angiogenesis is driven by a complex interplay between pro-angiogenic (VEGF/VEGFR, PDGF/PDGFR) and anti-angiogenic factors (TSP-1/TSP-2) within the tumor microenvironment. In addition, control of tissue remodeling and degradation by matrix metalloproteinases (MMPs) and tissue inhibitor of metalloproteinases (TIMPs) contribute to tumor angiogenesis. Furthermore, tumor suppressors or oncogenes that control cellular motility and maintain or promote hypoxia (HIFs and MYC) are also actively playing roles in tumor angiogenesis. Noncoding RNAs (ncRNAs), including microRNAs, are a novel class of regulatory molecules that control the gene expression in a posttranscriptional manner. MicroRNAs regulate important physiological processes, such as proliferation, apoptosis, and differentiation, as well as pathological conditions including oncogenesis. Accumulating evidence suggests that microRNAs directly modulate the process of angiogenesis by targeting important angiogenic factors and signaling molecules. Understanding the molecular mechanism behind the regulation of angiogenesis by microRNAs is important due to their therapeutic potential which may lead to improving outcome for cancer patients. Besides, ncRNAs with a regulatory role in angiogenesis, such as long noncoding RNAs (lncRNAs), have been identified in the genome. However, the mechanisms of the vast majority of lncRNAs are currently unknown. For the few lncRNAs characterized at the functional level, accumulating evidence shows that they play important roles in malignant diseases. The function and mechanism in angiogenesis will be described in this chapter.

X Demographics

X Demographics

The data shown below were collected from the profiles of 5 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 14 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 14 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 4 29%
Student > Ph. D. Student 2 14%
Student > Master 2 14%
Student > Doctoral Student 1 7%
Other 1 7%
Other 1 7%
Unknown 3 21%
Readers by discipline Count As %
Medicine and Dentistry 4 29%
Biochemistry, Genetics and Molecular Biology 3 21%
Agricultural and Biological Sciences 1 7%
Unspecified 1 7%
Neuroscience 1 7%
Other 1 7%
Unknown 3 21%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 06 July 2016.
All research outputs
#14,268,160
of 22,880,230 outputs
Outputs from Advances in experimental medicine and biology
#2,098
of 4,951 outputs
Outputs of similar age
#204,690
of 355,070 outputs
Outputs of similar age from Advances in experimental medicine and biology
#30
of 94 outputs
Altmetric has tracked 22,880,230 research outputs across all sources so far. This one is in the 35th percentile – i.e., 35% of other outputs scored the same or lower than it.
So far Altmetric has tracked 4,951 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.1. This one has gotten more attention than average, scoring higher than 54% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 355,070 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 39th percentile – i.e., 39% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 94 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 67% of its contemporaries.