↓ Skip to main content

Molecular Mechanisms of Cell Differentiation in Gonad Development

Overview of attention for book
Attention for Chapter 10: Molecular Mechanisms of Cell Differentiation in Gonad Development
Altmetric Badge

Mentioned by

twitter
1 X user

Readers on

mendeley
27 Mendeley
citeulike
1 CiteULike
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Molecular Mechanisms of Cell Differentiation in Gonad Development
Chapter number 10
Book title
Molecular Mechanisms of Cell Differentiation in Gonad Development
Published in
Results and problems in cell differentiation, June 2016
DOI 10.1007/978-3-319-31973-5_10
Pubmed ID
Book ISBNs
978-3-31-931971-1, 978-3-31-931973-5
Authors

Mecklenburg, Jennifer M, Hermann, Brian P, Jennifer M. Mecklenburg, Brian P. Hermann Ph.D., Brian P. Hermann

Editors

Rafal P. Piprek

Abstract

Mammalian spermatogenesis is a complex and highly ordered process by which male germ cells proceed through a series of differentiation steps to produce haploid flagellated spermatozoa. Underlying this process is a pool of adult stem cells, the spermatogonial stem cells (SSCs), which commence the spermatogenic lineage by undertaking a differentiation fate decision to become progenitor spermatogonia. Subsequently, progenitors acquire a differentiating spermatogonia phenotype and undergo a series of amplifying mitoses while becoming competent to enter meiosis. After spermatocytes complete meiosis, post-meiotic spermatids must then undergo a remarkable transformation from small round spermatids to a flagellated spermatozoa with extremely compacted nuclei. This chapter reviews the current literature pertaining to spermatogonial differentiation with an emphasis on the mechanisms controlling stem cell fate decisions and early differentiation events in the life of a spermatogonium.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 27 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 27 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 6 22%
Student > Master 4 15%
Student > Doctoral Student 3 11%
Student > Bachelor 2 7%
Professor > Associate Professor 2 7%
Other 1 4%
Unknown 9 33%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 7 26%
Agricultural and Biological Sciences 5 19%
Medicine and Dentistry 4 15%
Unknown 11 41%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 15 June 2016.
All research outputs
#20,333,181
of 22,877,793 outputs
Outputs from Results and problems in cell differentiation
#163
of 217 outputs
Outputs of similar age
#304,691
of 352,336 outputs
Outputs of similar age from Results and problems in cell differentiation
#7
of 11 outputs
Altmetric has tracked 22,877,793 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 217 research outputs from this source. They receive a mean Attention Score of 2.1. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 352,336 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 11 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.