↓ Skip to main content

Gene Synthesis

Overview of attention for book
Cover of 'Gene Synthesis'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Building block synthesis using the polymerase chain assembly method.
  3. Altmetric Badge
    Chapter 2 Oligonucleotide assembly in yeast to produce synthetic DNA fragments.
  4. Altmetric Badge
    Chapter 3 TopDown Real-Time Gene Synthesis
  5. Altmetric Badge
    Chapter 4 De Novo DNA Synthesis Using Single-Molecule PCR
  6. Altmetric Badge
    Chapter 5 SLIC: A Method for Sequence- and Ligation-Independent Cloning.
  7. Altmetric Badge
    Chapter 6 Assembly of Standardized DNA Parts Using BioBrick Ends in E. coli.
  8. Altmetric Badge
    Chapter 7 Assembling DNA Fragments by USER Fusion
  9. Altmetric Badge
    Chapter 8 Fusion PCR via Novel Overlap Sequences
  10. Altmetric Badge
    Chapter 9 Using recombineering to generate point mutations: the oligonucleotide-based "hit and fix" method.
  11. Altmetric Badge
    Chapter 10 Using Recombineering to Generate Point Mutations:galK-Based Positive-Negative Selection Method.
  12. Altmetric Badge
    Chapter 11 Assembling Large DNA Segments in Yeast
  13. Altmetric Badge
    Chapter 12 Recursive construction of perfect DNA molecules and libraries from imperfect oligonucleotides.
  14. Altmetric Badge
    Chapter 13 Cloning whole bacterial genomes in yeast.
  15. Altmetric Badge
    Chapter 14 Production of infectious poliovirus from synthetic viral genomes.
  16. Altmetric Badge
    Chapter 15 In silico design of functional DNA constructs.
  17. Altmetric Badge
    Chapter 16 Using DNAWorks in Designing Oligonucleotides for PCR-Based Gene Synthesis
  18. Altmetric Badge
    Chapter 17 De Novo Gene Synthesis Design Using TmPrime Software
  19. Altmetric Badge
    Chapter 18 Design-A-Gene with GeneDesign.
  20. Altmetric Badge
    Chapter 19 Leading a Successful iGEM Team.
  21. Altmetric Badge
    Chapter 20 The Build-a-Genome Course.
  22. Altmetric Badge
    Chapter 21 DNA Synthesis Security
Attention for Chapter 20: The Build-a-Genome Course.
Altmetric Badge

About this Attention Score

  • In the top 5% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (97th percentile)
  • High Attention Score compared to outputs of the same age and source (98th percentile)

Mentioned by

news
2 news outlets
blogs
2 blogs
twitter
3 X users
facebook
1 Facebook page
googleplus
1 Google+ user

Citations

dimensions_citation
10 Dimensions

Readers on

mendeley
14 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
The Build-a-Genome Course.
Chapter number 20
Book title
Gene Synthesis
Published in
Methods in molecular biology, January 2012
DOI 10.1007/978-1-61779-564-0_20
Pubmed ID
Book ISBNs
978-1-61779-563-3, 978-1-61779-564-0
Authors

Eric M. Cooper, Helöise Müller, Srinivasan Chandrasegaran, Joel S. Bader, Jef D. Boeke, Cooper, Eric M., Müller, Helöise, Chandrasegaran, Srinivasan, Bader, Joel S., Boeke, Jef D.

Abstract

Build-a-Genome is an intensive laboratory course at Johns Hopkins University that introduces undergraduates to the burgeoning field of synthetic biology. In addition to lectures that provide a comprehensive overview of the field, the course contains a unique laboratory component in which the students contribute to an actual, ongoing project to construct the first synthetic eukaryotic cell, a yeast cell composed of man-made parts. In doing so, the students acquire basic molecular biology skills and gain a truly "graduate student-like experience" in which they take ownership of their projects, troubleshoot their own experiments, present at frequent laboratory meetings, and are given 24-h access to the laboratory, albeit with all the guidance they will need to complete their projects during the semester. In this chapter, we describe the organization of the course and provide advice for anyone interested in starting a similar course at their own institution.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 14 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 3 21%
Unknown 11 79%

Demographic breakdown

Readers by professional status Count As %
Researcher 4 29%
Professor 3 21%
Student > Master 2 14%
Other 1 7%
Student > Ph. D. Student 1 7%
Other 3 21%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 6 43%
Agricultural and Biological Sciences 6 43%
Unknown 2 14%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 37. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 08 November 2023.
All research outputs
#1,069,811
of 24,853,509 outputs
Outputs from Methods in molecular biology
#95
of 13,961 outputs
Outputs of similar age
#6,640
of 255,014 outputs
Outputs of similar age from Methods in molecular biology
#7
of 491 outputs
Altmetric has tracked 24,853,509 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 95th percentile: it's in the top 5% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 13,961 research outputs from this source. They receive a mean Attention Score of 3.5. This one has done particularly well, scoring higher than 99% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 255,014 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 97% of its contemporaries.
We're also able to compare this research output to 491 others from the same source and published within six weeks on either side of this one. This one has done particularly well, scoring higher than 98% of its contemporaries.