↓ Skip to main content

Computational Design of Ligand Binding Proteins

Overview of attention for book
Cover of 'Computational Design of Ligand Binding Proteins'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 In silico Identification and Characterization of Protein-Ligand Binding Sites
  3. Altmetric Badge
    Chapter 2 Computational Modeling of Small Molecule Ligand Binding Interactions and Affinities.
  4. Altmetric Badge
    Chapter 3 Binding Site Prediction of Proteins with Organic Compounds or Peptides Using GALAXY Web Servers.
  5. Altmetric Badge
    Chapter 4 Computational Design of Ligand Binding Proteins
  6. Altmetric Badge
    Chapter 5 PocketOptimizer and the Design of Ligand Binding Sites.
  7. Altmetric Badge
    Chapter 6 Proteus and the Design of Ligand Binding Sites.
  8. Altmetric Badge
    Chapter 7 A Structure-Based Design Protocol for Optimizing Combinatorial Protein Libraries.
  9. Altmetric Badge
    Chapter 8 Computational Design of Ligand Binding Proteins
  10. Altmetric Badge
    Chapter 9 Computational Design of Ligand Binding Proteins
  11. Altmetric Badge
    Chapter 10 Computational Design of Multinuclear Metalloproteins Using Unnatural Amino Acids.
  12. Altmetric Badge
    Chapter 11 De Novo Design of Metalloproteins and Metalloenzymes in a Three-Helix Bundle.
  13. Altmetric Badge
    Chapter 12 Design of Light-Controlled Protein Conformations and Functions.
  14. Altmetric Badge
    Chapter 13 Computational Introduction of Catalytic Activity into Proteins.
  15. Altmetric Badge
    Chapter 14 Computational Design of Ligand Binding Proteins
  16. Altmetric Badge
    Chapter 15 Design of Specific Peptide-Protein Recognition.
  17. Altmetric Badge
    Chapter 16 Computational Design of DNA-Binding Proteins.
  18. Altmetric Badge
    Chapter 17 Motif-Driven Design of Protein-Protein Interfaces.
  19. Altmetric Badge
    Chapter 18 Computational Design of Ligand Binding Proteins
  20. Altmetric Badge
    Chapter 19 Computational Design of Ligand Binding Proteins
  21. Altmetric Badge
    Chapter 20 Computational Design of Protein Linkers.
  22. Altmetric Badge
    Chapter 21 Modeling of Protein-RNA Complex Structures Using Computational Docking Methods.
Attention for Chapter 12: Design of Light-Controlled Protein Conformations and Functions.
Altmetric Badge

Citations

dimensions_citation
12 Dimensions

Readers on

mendeley
14 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Design of Light-Controlled Protein Conformations and Functions.
Chapter number 12
Book title
Computational Design of Ligand Binding Proteins
Published in
Methods in molecular biology, January 2016
DOI 10.1007/978-1-4939-3569-7_12
Pubmed ID
Book ISBNs
978-1-4939-3567-3, 978-1-4939-3569-7
Authors

Ryan S. Ritterson, Daniel Hoersch, Kyle A. Barlow, Tanja Kortemme

Editors

Barry L. Stoddard

Abstract

In recent years, interest in controlling protein function with light has increased. Light offers a number of unique advantages over other methods, including spatial and temporal control and high selectivity. Here, we describe a general protocol for engineering a protein to be controllable with light via reaction with an exogenously introduced photoisomerizable small molecule and illustrate our protocol with two examples from the literature: the engineering of the calcium affinity of the cell-cell adhesion protein cadherin, which is an example of a protein that switches from a native to a disrupted state (Ritterson et al. J Am Chem Soc (2013) 135:12516-12519), and the engineering of the opening and closing of the chaperonin Mm-cpn, an example of a switch between two functional states (Hoersch et al.: Nat Nanotechn (2013) 8:928-932). This protocol guides the user from considering which proteins may be most amenable to this type of engineering, to considerations of how and where to make the desired changes, to the assays required to test for functionality.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 14 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 14 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 5 36%
Researcher 3 21%
Student > Master 2 14%
Student > Bachelor 1 7%
Student > Doctoral Student 1 7%
Other 1 7%
Unknown 1 7%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 5 36%
Agricultural and Biological Sciences 2 14%
Neuroscience 2 14%
Chemistry 2 14%
Engineering 1 7%
Other 0 0%
Unknown 2 14%