↓ Skip to main content

Microbial Environmental Genomics (MEG)

Overview of attention for book
Cover of 'Microbial Environmental Genomics (MEG)'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 "Deciphering Archaeal Communities" Omics Tools in the Study of Archaeal Communities.
  3. Altmetric Badge
    Chapter 2 Investigating the Endobacteria Which Thrive in Arbuscular Mycorrhizal Fungi
  4. Altmetric Badge
    Chapter 3 GenoSol Platform: A Logistic and Technical Platform for Conserving and Exploring Soil Microbial Diversity.
  5. Altmetric Badge
    Chapter 4 Sample Preparation for Fungal Community Analysis by High-Throughput Sequencing of Barcode Amplicons
  6. Altmetric Badge
    Chapter 5 Fungal Communities in Soils: Soil Organic Matter Degradation.
  7. Altmetric Badge
    Chapter 6 DNA-Based Characterization and Identification of Arbuscular Mycorrhizal Fungi Species.
  8. Altmetric Badge
    Chapter 7 Molecular Identification of Soil Eukaryotes and Focused Approaches Targeting Protist and Faunal Groups Using High-Throughput Metabarcoding.
  9. Altmetric Badge
    Chapter 8 Identification and In Situ Distribution of a Fungal Gene Marker: The Mating Type Genes of the Black Truffle
  10. Altmetric Badge
    Chapter 9 Stable-Isotope Probing RNA to Study Plant/Fungus Interactions
  11. Altmetric Badge
    Chapter 10 Targeted Gene Capture by Hybridization to Illuminate Ecosystem Functioning.
  12. Altmetric Badge
    Chapter 11 Hybridization of Environmental Microbial Community Nucleic Acids by GeoChip.
  13. Altmetric Badge
    Chapter 12 Reconstruction of Transformation Processes Catalyzed by the Soil Microbiome Using Metagenomic Approaches.
  14. Altmetric Badge
    Chapter 13 MG-RAST, a Metagenomics Service for Analysis of Microbial Community Structure and Function.
  15. Altmetric Badge
    Chapter 14 Analysis of Active Methylotrophic Communities: When DNA-SIP Meets High-Throughput Technologies.
  16. Altmetric Badge
    Chapter 15 Functional Metagenomics: Construction and High-Throughput Screening of Fosmid Libraries for Discovery of Novel Carbohydrate-Active Enzymes.
  17. Altmetric Badge
    Chapter 16 Metatranscriptomics of Soil Eukaryotic Communities
  18. Altmetric Badge
    Chapter 17 Analysis of Ancient DNA in Microbial Ecology.
Attention for Chapter 5: Fungal Communities in Soils: Soil Organic Matter Degradation.
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
1 X user

Citations

dimensions_citation
24 Dimensions

Readers on

mendeley
24 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Fungal Communities in Soils: Soil Organic Matter Degradation.
Chapter number 5
Book title
Microbial Environmental Genomics (MEG)
Published in
Methods in molecular biology, January 2016
DOI 10.1007/978-1-4939-3369-3_5
Pubmed ID
Book ISBNs
978-1-4939-3367-9, 978-1-4939-3369-3
Authors

Větrovský, Tomáš, Štursová, Martina, Baldrian, Petr, Tomáš Větrovský, Martina Štursová, Petr Baldrian

Editors

Francis Martin, Stephane Uroz

Abstract

Stable isotope probing (SIP) provides the opportunity to label decomposer microorganisms that build their biomass on a specific substrate. In combination with high-throughput sequencing, SIP allows for the identification of fungal community members involved in a particular decomposition process. Further information can be gained through gene-targeted metagenomics and metatranscriptomics, opening the possibility to describe the pool of genes catalyzing specific decomposition reactions in situ and to identify the diversity of genes that are expressed. When combined with gene descriptions of fungal isolates from the same environment, specific biochemical reactions involved in decomposition can be linked to individual fungal taxa. Here we describe the use of these methods to explore the cellulolytic fungal community in forest litter and soil.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 24 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Brazil 2 8%
United Kingdom 1 4%
Unknown 21 88%

Demographic breakdown

Readers by professional status Count As %
Student > Master 6 25%
Researcher 4 17%
Other 3 13%
Student > Doctoral Student 2 8%
Student > Ph. D. Student 2 8%
Other 3 13%
Unknown 4 17%
Readers by discipline Count As %
Agricultural and Biological Sciences 10 42%
Environmental Science 4 17%
Biochemistry, Genetics and Molecular Biology 2 8%
Immunology and Microbiology 1 4%
Earth and Planetary Sciences 1 4%
Other 2 8%
Unknown 4 17%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 23 January 2016.
All research outputs
#15,821,622
of 23,498,099 outputs
Outputs from Methods in molecular biology
#5,527
of 13,368 outputs
Outputs of similar age
#234,750
of 396,908 outputs
Outputs of similar age from Methods in molecular biology
#554
of 1,472 outputs
Altmetric has tracked 23,498,099 research outputs across all sources so far. This one is in the 22nd percentile – i.e., 22% of other outputs scored the same or lower than it.
So far Altmetric has tracked 13,368 research outputs from this source. They receive a mean Attention Score of 3.4. This one is in the 44th percentile – i.e., 44% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 396,908 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 31st percentile – i.e., 31% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 1,472 others from the same source and published within six weeks on either side of this one. This one is in the 47th percentile – i.e., 47% of its contemporaries scored the same or lower than it.